

Faculty of Engineering and Technology

Programme: M.E – Manufacturing Engineering – FULL TIME

CHOICE BASED CREDIT SYSTEM (CBCS)

Curriculum & Syllabus

(Semester I to IV)

Regulations 2021

VINAYAKA MISSION'S RESEARCH FOUNDATION, DEEMED TO BE UNIVERSITY, SALEM

Department of Mechanical Engineering

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

PEO 1	The graduates will execute their professional skills and knowledge acquired
	in the field of manufacturing engineering and management of the resources
PEO 2	The graduates will provide the innovative solutions to the problems arising
	in production to implement the green manufacturing
PEO 3	The graduate will execute the work with professional ethics, team work,
	develop quality products and will follow human values in their life.
PEO 4	The graduates will be able to develop innovative products and to become
	entrepreneur.
PEO 5	The graduates will involve in continuous learning and will be able to
	execute consultancy services.

PROGRAM SPECIFIC OUTCOMES (PSOs)

To achieve the mission of the program, Mechanical Engineering graduates will be able:

700.1	To work independently as well as in team to formulate, design, execute										
PSO.1	solutions for engineering problems and also analyze, synthesize technical										
	data for application to product, process, system design & development										
	To understand & contribute towards social, environmental issues,										
PSO.2	following professional ethics and codes of conduct and embrace lifelong										
	learning for continuous improvement										
PSO.3	To develop expertise towards use of modern engineering tools, careers in										
F50.3	industries and research and demonstrate entrepreneurial skill										

PROGRAMME OUTCOMES

Engineering Graduates will be able to:

PO1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems
PO2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO10	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO11	Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Credit Requirement for Course Categories

ME – MANUFACTURING ENGINEERING

S.No	Category of Courses	Credits to be earned
	A. Foundation Courses	_
1	a. Basic Sciences Courses - 3 credit	5
	b. Research Methodology and IPR - 2	
2	B. Program core courses	32
	C. Elective courses	
3	a. Program electives - 15	18
	b. Open electives - 03	
	D. Employability Enhancement Courses and courses	
	for presentation of Technical skills related to the	
	specialization	
4	Project work phase I - 6	20
	Project work phase II - 12	
	Internship/Industrial training - 1	
	Research paper writing technical Seminar - 1	
_	Mandatory Courses	0
5	Audit Courses - 2 courses to be selected	0
		75

	Semester I									
S.No	Course Code	Course Name	Offering Dept	Category	L	Т	P	C		
1		Applied Probability and Statistics	Maths	BS	3	0	0	3		
2		Advanced in Manufacturing Technology	MECH	CC	3	0	0	3		
3		Computer Integrated Manufacturing Systems	MECH	CC	3	0	0	3		
4		Advances in Casting and Welding	MECH	CC	3	0	0	3		
5		Advanced Materials Technology	MECH	CC	3	0	0	3		
6		Professional Elective I	MECH	EC	3	0	0	3		
7		CIM Laboratory	MECH	CC	0	0	4	2		
8		Modelling and Analysis Lab	MECH	CC	0	0	4	2		
9		Audit course - I			2			0		

		Semester II						
S.No	Course Code	Course Name	Offering Dept	Category	L	Т	P	С
1		Optimization Techniques in Manufacturing	MECH	CC	3	0	0	3
2		Advances in Metrology and Inspection	MECH	CC	3	0	0	3
3		Metal Forming Process	MECH	CC	3	0	0	3
4		Metal Cutting Theory and Practice	MECH	CC	3	0	0	3
5		Professional Elective II	MECH	EC	3	0	0	3
6		Professional Elective III	MECH	EC	3	0	0	3
7		Automation and Metal Forming Laboratory	MECH	CC	0	0	4	2
8		Advanced Metallurgy Lab	MECH	CC	0	0	4	2
9		Audit course - II			2			0
10		Internship/Industrial training						1

	Semester III									
S.No	Course Code	Course Name	Offering Dept	Category	L	Т	P	С		
1		Professional Elective IV	MECH	EC	3	0	0	3		
2		Professional Elective V	MECH	EC	3	0	0	3		
3		Open Elective		OE	3	0	0	3		
4		Research Methodology and IPR	MECH	FC	3	0	0	2		
5		Research paper writing technical Seminar	МЕСН					1		
6		Project Work Phase I	MECH	D			12	6		

	Semester IV							
S.No	Course Code	Course Name	Offering Dept	Category	L	Т	P	С
1		Project Work Phase II	MECH	D	0	0	24	12

	Elective -I									
S.No	Course Code	Course Name	Offering Dept	Category	L	Т	P	С		
1		Fluid Power Automation	MECH	EC	3	0	0	3		
2		Design for Manufacture and Assembly	MECH	EC	3	0	0	3		
3		Micro Manufacturing	MECH	EC	3	0	0	3		
4		Quality and Reliability Engineering	MECH	EC	3	0	0	3		

	Elective -II									
S.No	Course Code	Course Name	Offering Dept	Category	L	T	P	С		
1		Finite Element Methods for Manufacturing Engineering	MECH	EC	3	0	0	3		
2		Materials Management & Logistics	MECH	EC	3	0	0	3		
3		Industrial Ergonomics	MECH	EC	3	0	0	3		
4		Robot Design & Programming	MECH	EC	3	0	0	3		
5		Non-Destructive Testing and Evaluation	MECH	EC	3	0	0	3		
6		Lean Manufacturing	MECH	EC	3	0	0	3		
7		MEMS and Nanotechnology	MECH	EC	3	0	0	3		

	Elective -III										
S.No	Course Code	Course Name	Offering Dept	Category	L	Т	P	C			
1		Computer Aided Product Design	MECH	EC	3	0	0	3			
2		Process Planning and Cost Estimation	MECH	EC	3	0	0	3			
3		Manufacturing Management	MECH	EC	3	0	0	3			
4		Nano-structured Materials and Applications	MECH	EC	3	0	0	3			
5		Materials Testing and Characterization Techniques	MECH	EC	3	0	0	3			
6		Mechatronics	MECH	EC	3	0	0	3			
7		Composite materials	MECH	EC	3	0	0	3			
8		Emerging Materials	MECH	EC	3	0	0	3			
9		Manufacturing System Simulation	MECH	EC	3	0	0	3			
10		Product Lifecycle Management	MECH	EC	3	0	0	3			
11		Additive Manufacturing	MECH	EC	3	0	0	3			
12		Product Design and Development	MECH	EC	3	0	0	3			
13		Entrepreneurship Development	MECH	EC	3	0	0	3			

	Open Elective									
S.No	Course Code	Course Name	Offering Dept	Category	L	Т	P	С		
1		Project Management for Engineering Business and Technology	MGT	OE	3	0	0	3		
2		Green Power Generation Systems	EEE	OE	3	0	0	3		
3		Operations Research	Maths	OE	3	0	0	3		
4		New Venture Planning and Management	MGT	OE	3	0	0	3		
5		Fundamentals of Internet of Things	CSE	OE	3	0	0	3		

	Audit Course 1 & 2												
S.No	Course Code	Course Name Category 1											
1		English for Research Paper Writing	HSS										
2		Disaster Mitigation and Management	Civil										
3		Constitution of India	Civil										
4		Value Education											
5		Stress Management by Yoga											
6		Personality Development through Life Enlightenment Skills											
7													

FOUNDATION COURSES

			A	PPLII	ED PR	OBAB	BILITY	Y AND)	Categ	gory	L	T	P	Credit
					STA	TISTI	CS			BS	S	2	2	0	3
This co	ne basis ing. It i	designe for ma	ny othe	er areas	in the	mathen	natical	science	s includ	ling stati	stics, mo	odern op	timizatio	n method	ods which ls and risk ultivariate
PRER	EQUI	SITE -	· Nil												
COUI	RSE O	BJEC	ΓIVES	1											
1		ndersta butions		e basic	s of ra	andom	variab	oles wi	ith em	phasis o	on the s	standard	discrete	e and co	ontinuous
2	To in	troduce	e the co	oncepts	of san	npling	distrib	utions	and the	test sta	tistics				
3	To paraly		an un	derstar	nding o	of the	statisti	ical m	ethods	and co	ncepts	by whic	ch real	ife prob	olems are
4	To tra	ain the	studen	ts in de	esign ex	kperim	ents an	d use t	these co	oncepts	for rese	arch			
5	To ur	dersta	nd the	basics	of Mul	tivariat	te Anal	lysis							
COUI	RSE O	UTCO	MES												
On the	succes	ssful co	ompleti	on of t	he cou	rse, stu	dents v	will be	able to						
	Able to	_		perfor	mance	in tern	ns of p	robabi	lities a	nd distri	butions	achieve	ed by the	Appl	y
CO2.	Aware	of vari	ous tes	t statis	tics for	the sa	mples.							Appl	y
CO3.	develoj	an ab	oility to	apply	statist	ical tes	ts in ex	xperim	ents as	well as	to anal	yze and	interpre	t Appl	y
CO4.	use the	conce	pts in d	lesign o	of expe	riment	s in rea	al life p	roblen	ns				Appl	y
	Performating de				•					as multi	variate	normal	density	, Appl	y
MAPI	PING V	VITH	PROG	FRAM	ME O	UTCO	MES	AND I	PROG	RAMM	E SPE	CIFIC C	OUTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	M	L				M				M			
CO2	S	S	M	L				M				M			
CO3	S	S	M	L				M				M			
CO4	S	S	S	L				M				M			
CO5	S	S	M	M	L			M				M			

S- Strong; M-Medium; L-Low

SYLLABUS

RANDOM VARIABLES

Random variables — Probability function - Standard Distributions - Binomial, Poisson, Geometric, Uniform, Exponential, Normal distributions and their applications.

ESTIMATION THEORY

Sampling distributions – Estimation of parameters (consistent and unbiased) – Point and interval estimates for population proportions, mean and variance - Maximum likelihood estimate method - Method of moments - Curve fitting by principle of least squares – Regression lines.

TESTING OF HYPOTHESIS

Hypothesis testing – Small samples/Large Samples – Tests concerning proportion, means, standard deviations – Tests based on chi square – Non parametric test – Sign test, Wilcoxon signed rank test, Mann-Whitney test, Run test, Kolmogorov – Smirnov test, Spearman's and Kendall's test.

DESIGN OF EXPERIMENT: Experimental design – Analysis of variance – Methods for one, two factor models, – 2^k Factorial Design - Confounding in Factorial Design – Fractional Factorial Design - Response Surface Methods – Central Composite Design

MULTIVARIATE ANALYSIS Random vectors and matrices – Mean vectors and covariance matrices – Multivariate normal density and its properties – Principal components - Population principal components – Principal components from standardized variables

TEXT BOOKS:

- 1. S.P. Gupta, "Statistical Methods", Sultan Chand & Sons, New Delhi, 45th Revised Edition (2017)
- 2. Douglas C. Montgomery and George C.Runger, "Applied Statistics and Probability for Engineers", 6th Edition, Wiley (2013)

REFERENCES:

- 1. S.C.Gupta and V.K.Kapoor, "Fundamentals of Mathematical Statistics", Sultan Chand & Sons, New Delhi (2015).
- 2. I.R. Miller, J.E. Freund and R. Johnson, "Probability and Statistics for Engineers", 8th Edition, (2015)

COURSE DESIGNERS

S	.No	Name of the Faculty	Designation	Department	Mail ID
	1	Dr. P.Sasikala	Professor	Mathematics	sasikala@vmkvec.edu.in

2.	Dr. M.Thamizhsudar	Asso. Professor	Mathematics	thamizhsudar@avit.ac.in

Course Code	Course Title	category	L	T	P	C
	Research Methodology and IPR	HSS	2	0	0	2

Course Outcomes:

At the end of this course, students will be able to

- 1. Understand research problem formulation.
- 2. Analyze research related information.
- 3. Follow research ethics.
- 4. Technology, but tomorrow world will be ruled by ideas, concept, and creativity.
- 5. Understanding that when IPR would take such important place in growth of individuals & nation, it is needless to emphasis, the need of information about Intellectual Property Right to be promoted among students in general & Engineering in particular.
- 6. Understand that IPR protection provides an incentive to inventors for further research work and investment in R & D, which leads to creation of new and better products, and in turn brings about, economic growth and social benefits.

UNIT I- RESEARCH PROBLEM AND SCOPE FOR SOLUTION

Meaning of research problem, Sources of research problem, Criteria Characteristics of a good research problem, Errors in selecting a research problem, Scope and objectives of research problem. Approaches of investigation of solutions for research problem, data collection, analysis, interpretation, Necessary instrumentations

UNIT II- FORMAT

Effective literature studies approaches, analysis, Plagiarism, Research ethics. Effective technical writing, how to write report, Paper Developing a Research Proposal, Format of research proposal, a presentation and assessment by a review committee

UNIT III- PROCESS AND DEVELOPMENT

Nature of Intellectual Property: Patents, Designs, Trade and Copyright. Process of Patenting and Development: technological research, innovation, patenting, development. International Scenario: International cooperation on Intellectual Property. Procedure for grants of patents, patenting under PCT.

UNIT IV- PATENT RIGHTS

Patent Rights: Scope of Patent Rights. Licensing and transfer of technology. Patent information and databases. Geographical Indications.

UNIT V- NEW DEVELOPMENTS IN IPR

New Developments in IPR: Administration of Patent System. New developments in IPR; IPR of Biological Systems, Computer Software etc. Traditional knowledge Case Studies, IPR and IITs.

TEXT BOOKS

- 1. Stuart Melville and Wayne Goddard, "Research methodology: an introduction for science & engineering students" Juta Publishers, 1996.
- 2. Wayne Goddard and Stuart Melville, "Research Methodology: An Introduction", Juta Publishers, 2004.
- 3. Ranjit Kumar, 2nd Edition, "Research Methodology: A Step by Step Guide for beginners"

REFERENCES

- 1. Halbert, "Resisting Intellectual Property", Taylor & Francis Ltd ,2007.
- 2. Mayall, "Industrial Design", McGraw Hill, 1992.
- 3. Niebel, "Product Design", McGraw Hill, 1974.
- 4. Asimov, "Introduction to Design", Prentice Hall, 1962.
- 5. Robert P. Merges, Peter S. Menell, Mark A. Lemley, "Intellectual Property in New Technological Age", 2016.
- 6. T. Ramappa, "Intellectual Property Rights Under WTO", S. Chand, 2008

PROGRAM CORE COURSES

			VAN					Ca	tegor	v	L	T	P	Cro	edit
			UFA CHN(CC	_	3	0	0		3
	pose th					manu	factu	ring n	ew pr	oducts	due to	the dev	elopme	ent of n	ew
materia															
Prerec	quisite														
Cours	e Obje	ctive													
1 T	To infor	m the	stude	nts at	out tl	ne var	ious a	alterna	ative n	nanufa	cturing	proces	ses ava	ilable.	
2 Т	To deve	lop ar	ı attitu	ide to	look	for th	e unc	onven	tional	manu	facturii	ng proce	ess to m	nachine	
	To make abricati				and a	nd app	orecia	te the	latest	manu	facturii	ng proce	ess for 1	micro	
Cours	e Outc	omes:	On t	he su	ccessf	ul co	mplet	tion o	f the c	course	, stude	nts will	be abl	e to	
CO1.	To ur proce		and th	e conc	cepts a	and m	ethod	s of va	arious	newer	machii	ning	Under	rstand	
CO2.	To ga proce		owled	lge in	the ap	plica	tion o	of wire	cut E	EDM a	nd rela	tive	Apply	/	
CO3.			the la				ning p	proces	s and	to stud	y its m	erits	Analy	/ze	
CO4.			liar w		e vari	ous ap	plica	tions	of sur	face m	odifica	tion	Apply	/	
CO5.	To de		knov		e in th	e app	licatio	on of 1	micro	fabrica	ation		Analy	ze	
Mappi	ing wit	h Pro	gram	me O	utcon	nes ar	ıd Pr	ogran	nme S	pecifi	c Outc	omes			
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	M	-	ı	M	ı	-	-	ı	ı	-	M	-	
CO2	S	s	M	M	-	M	-	-	-	-	-	-	M	-	
CO3	S	М	М	M	ı	M	ı	-	-	ı	ı	-	M	-	
CO4	S	S	M	M	1	M	1	-	-	1	ı	-	M	-	
CO5	S	S	S	S	-	S	-	-	-	-	-	-	S	-	
S- Stroi	ng; M-M	ledium	; L-Lo	w				•					1		

SYLLABUS

UNIT I NEWER MACHINING PROCESSES - I

9

(Non thermal energy) – Abrasive machining – water jet machining - ultrasonic machining - chemical machining – electro chemical machining – construction working principle – steps - types – process parameters – derivations – problems, merits, demerits and applications .

UNIT II NEWER MACHINING PROCESS – II

9

Wire cut EDM - Electro chemical machining - ECG - Electric discharge machining - construction - principle - types - control - circuits - tool design - merits, demerits & applications.

UNIT III NEWER MACHINING PROCESS - III

9

Laser beam machining – Electron beam machining – Plasma arc machining – Ion beam machining – construction working principle types – process parameter – derivations – problems, merits, demerits and applications.

UNIT IV FABRICATION OF MICRO DEVICES

9

Semiconductors – films and film depurification – Oxidation - diffusion – ion implantation – etching – metallization – bonding – surface and bulk machining – LIGA Process – Solid free form fabrication

UNIT V MICROFABRICATION TECHNOLOGY

9

Wafer preparation – monolithic processing – moulding – PCB board hybrid & mcm technology – programmable devices & ASIC – electronic material and processing.–steriolithography SAW devices, Surface Mount Technology,

REFERENCES:

TOTAL:45 PERIODS

Serope kelpekijian & stevan r. schmid- manufacturing process engg material – 2003
 Micro senors Mems & smart devices- Julian W.Hardner – 2002
 Brahem T. Smith, Advanced machining I.F.S. UK 1989.
 Jaeger R.C., Introduction to microelectronic fabrication Addison Wesley, 1988.
 Nario Taniguchi – Nano technology – Oxford University Press 1996.
 Pandey P.C. & Shan HS Modern Machining Processes, Standard Publishing Co., 1980

Course	Course Designers											
S.No	Faculty Name	Designation	Department/Name of the College	Email id								
1	Dr.R.Jayaraman	Assoc. Prof.	MECH/VMKVEC	jayaramanr@vmkvec.edu.in								
2												

		A				TERIA OGY	LS	Cate	egory	L	T		P	Cre	dit
								C	C	3	0		0	3	
Pream his cou	rse to gi	ives the	oroug	h knov	vledge	on advai	nced c	concept	ts of n	naterial	technol	logies o	f all En	gineerii	ng
Prerec	uisite :	: NIL													
	e Objec														
			wled	ge on	elasti	c, plastic	and	fractu	red be	ehaviou	ır of er	ngineer	ing ma	terials.	
2 T	o unde	rstand	the b	ehavi	or of	material	s und	er vari	ious 1	oads.					
	o unde		the	select	ion of	metallic	e and	non-r	netall	ic mate	erials f	or the	various	s engin	eerin
Course	e Outco	omes:	On t	he su	ccessf	ful comp	letio	n of th	ie coi	urse, st	udent	s will b	e able	to	
CO1.		anism.	Alsc	prop		elastic, p and appl						ing		Unders	stand
CO2.					of mat	erials un	der v	arious	load	ing con	ditions	S.		Anal	yse
N/ 9		l. D			4		D		- C	: C: - ()4				
		1				nes and	Prog	ramm	ie Sp	ecinc (Jutcon	nes		<u> </u>	
CO ₁	PO1 S	PO2 M	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12 M	PSO1 M	PSO2	PSO
CO2	S	M	M	-	-	-	-	-	-	-	-	S	S	-	M
S- Stror	g; M-M	[edium:	; L-Lo	w											
SYLL	-	•	,												
	TIC AN														9
eforma	tion-	Streng	gthen	ing r	necha	Anelasti nisms,	work	hard	lening	g, soli	d solu	ıtionin	g, gra	in bou	ında
						ng and Super pl									

9

FRACTURE BEHAVIOUR

Griffith's theory, stress intensity factor and fracture toughness – Toughening mechanisms – Ductile, brittle transition in steel – High temperature fracture, creep – Larson Miller parameter – Deformation and fracture mechanism maps – Fatigue, low and high cycle fatigue test, crack initiation and propagation mechanisms. Effect of surface and metallurgical parameters on fatigue – Fracture of non metallic materials – Failure analysis, sources of failure, procedure of failure analysis.

SELECTION OF MATERIALS

9

Motivation for selection, cost basis and service requirements – Selection for mechanical properties, strength, toughness, fatigue and creep – Selection for surface durability corrosion and wear resistance – Relationship between materials selection and processing – Case studies in materials selection with relevance to aero, auto, marine, machinery and nuclear applications – Computer aided materials selection.

MODERN METALLIC MATERIALS

9

Dual phase steels, High strength low alloy (HSLA) steel, Transformation induced plasticity (TRIP) Steel, Maraging steel, Nitrogen steel – Intermetallics, Ni and Ti aluminides – smart materials, shape memory alloys – Metallic glass and nano crystalline materials.

NON METALLIC MATERIALS

9

Polymeric materials – Formation of polymer structure – Production techniques of fibers, foams, adhesives and coating – structure, properties and applications of engineering polymers – Advanced structural ceramics, WC, TIC, TaC, Al₂O₃, SiC, Si₃N₄, CBN and diamond – properties, processing and applications.

Reference Books

- 1. George E.Dieter, Mechanical Metallurgy, McGraw Hill, 1988
- 2. Thomas H. Courtney, Mechanical Behaviour of Materials, (2nd edition), McGraw Hill, 2000
- 3. Charles, J.A., Crane, F.A.A. and Fumess, J.A.G., Selection and use of engineering materials, (3rd edition), Butterworth-Heiremann, 2001.
- 4. Flinn, R.A., and Trojan, P.K., Engineering Materials and their Applications, (4th Edition) Jaico, 1999.
- 5. ASM Hand book, Vol.11, Failure Analysis and Prevention, (10th Edition), ASM, 2002.
- 6. Ashby M.F., Material Selection in Mechanical Design, 3rd Edition, Butter Worth 2005.

Alternative NPTEL/SWAYAM Course

S.No	NPTEL /SWAYAM Course Name	Instructor	Host Institution	Duration

Course Designers

S.No	Faculty Name	Designation	Department/Name of the College	Email id
1	S. Arunkumar	Assistant Professor	MECH/VMKVEC	arunkumar@vmkvec.ed
				<u>u.in</u>

ADVANCED METALLURGY	Category	L	T	P	Credit
LABORATORY		0	0	4	2

Preamble

Workshop practices is fundamental to the development of any engineering product. This course is intended to expose engineering students to different types of manufacturing/ fabrication processes. It deals with machine, fitting, carpentry, foundry, smithy and welding related exercises. Also, it will induce the habit of selecting right tools, planning the job and its execution.

Prerequisite -NIL

Course Objective

- Exposure to the students with hands on experience on various basic engineering practices in Engineering.
- 2 To have a study and hands-on-exercise on plumbing and carpentry components.
- 3 To have a practice on gas welding, foundry operations and fitting

Course Outcomes: On the successful completion of the course, students will be able to

CO1.	Upon completion of this laboratory course, students will be able to fabricate components with their own hands.	Apply
CO2.	Examine the dimensional accuracies and dimensional tolerances possible with different manufacturing processes.	Apply
CO3.	Assembling different components, they will be able to produce small devices of their interest.	Apply

Mapping with Programme Outcomes and Programme Specific Outcomes

	CO	PO	PSO	PSO	PS											
'	CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	O3
(CO1	S	M	L	L	L	-	-	-	-	-	-	-	L	-	-
(CO2	S	M	L	L	L	-	-	-	-	-	-	-	L	-	-
(CO3	S	M	L	L	L	-	-	-	-	-	-	-	L	-	-

S- Strong; M-Medium; L-Low

Syllabus

Work Shop Practice

- 1. Study and use of metallurgical microscope.
- 2. Study of muffle furnace.
- 3. Study of Recovery, Recrystallisation and Grain growth of cold worked materials.
- 4. Metallographic specimen preparation, mechanical polishing, mounting, and etching.
- 5. Identification of Microstructure of different types of cast iron & steel specimens (Minimum 6) and use of specific etchants.
- 6. Identification of Microstructure of non-Ferrous specimens (Minimum 2)
- 7. and use of specific etchants.
- 8. Heat treatment Normalizing comparation between annealed and unheat treated specimen.

Text Books

1 WORKSHOP/MANUFACTURING PRACTICES, MANUAL

Reference Books

Hajra Choudhury S.K., Hajra Choudhury A.K. and Nirjhar Roy S.K., "Elements of Workshop Technology", Vol. I and Vol. II, Media promoters and publishers private limited, Mumbai

2	Rao P.N., "Manu	ufacturing Technolog	gy", Vol. I and Vol. II, Ta	ta McGraw Hill House.
3	NR. Banapurma	th, Basic Mechanical	Engineering, Vikas Publ	ications, Noida.
4	K.Venugopal, B	asic Mechanical Eng	ineering, Anuradha Publi	cations, Chennai.
Course	e Designers			
S.No	Faculty Name	Designation	Department / Name of the College	Email id
1	T.Raja	Asso.Prof	Mech / VMKVEC	rajat@vmkvec.edu.in
2				

ADVANCES IN CASTING AND Category L T P Credit WELDING CC 3 0 3 0

Preamble

To make the students learn about need advance in casting and welding technology

Prerequisite: NIL

Course Objective

- To study the metallurgical concepts and applications of casting and welding process.
- To impart the knowledge of joining different metallic and non metallic materials.

Course Outcomes: On the successful completion of the course, students will be able to

CO1.	Model the solidification process of castings and design of gating and risering	Apply
CO2.	Evaluate the suitability of various casting processes for a product.	Apply
CO3.	Evaluate the weldability of metals and alloys and their metallurgical aspects.	Analyze
	Select appropriate advanced welding techniques for aerospace, nuclear, automobile and naval applications	Apply

Mapping with Programme Outcomes and Programme Specific Outcomes

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	M	L	L	-	-	-	-	-	-	-	S	-	-
CO2	S	S	S	M	M	-	-	-	-	-	-	-	S	-	-
CO3	S	S	S	M	M	-	-	-	-	-	-	-	S	-	-
CO4	S	S	S	M	M	-	-	-	-	-	-		S	-	-

S- Strong; M-Medium; L-Low

SYLLABUS

CASTING DESIGN

8

Heat transfer between metal and mould — Design considerations in casting – Designing for directional solidification and minimum stresses - principles and design of gating and risering

CASTING METALLURGY

8

Solidification of pure metal and alloys – shrinkage in cast metals – progressive and directional solidification \cdot Degasification of the melt-casting defects – Castability of steel, Cast Iron, Al alloys, Babbit alloy and Cu alloy.

RECENT TRENDS IN CASTING AND FOUNDRY LAYOUT

Shell moulding, precision investment casting, CO_2 moulding, centrifugal casting, Die casting, Continuouscasting, Counter gravity low pressure casting, Squeeze casting and semisolid processes. Layout of mechanized foundry — sand reclamation — material handling in foundry pollution control in foundry — Computer aided design of casting.

WELDING METALLURGY AND DESIGN

10

Heat affected Zone and its characteristics – Weldability of steels, cast iron, stainless steel, aluminum, Mg , Cu , Zirconium and titanium alloys – Carbon Equivalent of Plain and alloy steels Hydrogen embrittlement Lamellar tearing – Residual stress – Distortion and its control . Heat transfer and solidification - Analysis of - stresses in welded structures – pre and post welding heat treatments – weld joint design – welding defects Testing of weldment.

RECENT TRENDS IN WELDING

Friction welding, friction stir welding – explosive welding – diffusion bonding – high frequency induction welding – ultrasonic welding – electron beam welding – Laser beam welding – Plasma welding – Electroslag welding- narrow gap, hybrid twin wire active TIG – Tandem MIG- modern brazing and soldering techniques – induction, dip resistance, diffusion processes – Hot gas, wave and vapour phase soldering. Overview of automation of welding in aerospace, nuclear, surface transport vehicles and under water welding.

Reference Books

- 1. ASM Handbook, Vol 15, Casting, 2004
- 2. ASM Handbook vol.6, welding Brazing & Soldering, 2003
- 3. Parmer R.S., Welding Engineering and Technology, Khanna Publishers, 2002
- 4. Srinivasan N.K., Welding Technology, Khanna Tech Publishers, 2002
- 5. HEINELOPER & ROSENTHAL, Principles of Metal Casting, Tata McGraw Hill, 2000.
- 6. Jain P.L., Principles of Foundry Technology, Tata McGrawHill Publishers, 2003
- 7. Carrry B., Modern Welding Technology, Prentice Hall Pvt Ltd., 2002
- IOTROWSKI Robotic welding A guide to selection and application Society of mechanical Engineers, 1987.
- SCHWARIZ, M.M. Source book on innovative welding processes American Society for Metals (OHIO), 1981
- 10. CORNU.J. Advanced welding systems Volumes I, II and III, JAICO Publishers, 1994.
- 11. LANCASTER.J.F. Metallurgy of welding George Alien & Unwin Publishers, 1980.

Course Designers

Course	Designers			
S.No	Faculty Name	Designation	Department/Name of the College	Email id
1	Dr. S. Venkatesen	Professor	MECH/VMKVEC	venkatesh@vmkvec.edu.in
2				

	ME	VANC	OGY A	ND		(Catego	ry	L		T		P		edit
		SPECTI							3		0		0		3
Prereq	uisite: E	ngine	ering	Mate	erials	and l	Metal	lurgy	7						
Course	Objectiv														
1	Under	rstand	the va	arious	conc	epts c	of met	rolog	y and	measi	ureme	ents			
2	Devel	op the	knov	vledge	e on v	ariou	s mea	surem	nent m	nethod	ls of s	urfac	e roug	hness	5
3	Under	stand	the pr	inciple	s of li	ght int	erfere	nce							
4	Study	vario	us me	asurii	ng too	ls and	l laser	gaug	es						
5	Under	rstand	the in	nage p	roces	sing fo	r meti	rology							
Course	Outcom	es:Oı	n thes	ucces	sfulc	omple	etiono	f the	cours	e,stud	lentsv	villbe	ablet	0	
CO1.	Explain and pre					gies a	nd me	easure	ment	stand	ards,	errors	Uı	nderst	and
CO2.	Analyze contact	metho	ods										Aı	nalyze	;
CO3.	Apply t		rious 1	measu	ireme	nt tec	hniqu	e on 3	SD sur	face a	and na	no	Ap	oply	
CO4.	Analyse interfer			tion o	of inst	rumei	nts an	d mea	suren	nent o	f		Aı	nalyze	;
CO5.	Analyz	e the	variou	is me	asurin	ig tecl	nnique	es in v	ariou	s mac	hiner	y	Aı	nalyze	;
CO6.	Apply t	he va	rious i	nspec	ction 1	netho	ds in	Laser	techn	iques			Ap	pply	
CO7.	Apply v Metrolo		s imaş	ge pro	cessi	ng sys	stems	and in	nage	transf	ormat	ion in	ı Ap	oply	
Mappi	ngwith I	Progra	amme	Outc	omes	andP	rogra	mme	Speci	ficOu	ıtcom	es			
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
CO1	S	M	L	L	-	-	-	M	L	L	-	-	S	-	-
CO2	s s	S	M	M	-	-	-	L	L	L			S	-	-
CO3	S	S	M	M	-	-	-	M	L	L			S	_	-
CO4	S	S	M	M	-	-	-	M	L	L			S	-	-
COS	S	S	M	M	-	-	-	M	L	L			S	-	-
CO	S	M	M	M	-	-	-	M	L	L			S	-	-
CO7	S	M	L	L	-	-	-	M	L	L			S	-	-
S-Strong	g;M-Medi	um;L-	Low												

Syllabu	us .	
	21 CONCEPTS OF METROLOGY	9
Termino Selective	logies – Standards of measurement – Errors in measurement – Interchae assembly – Accuracy and Precision – Calibration of instruments – Basics gy and Form metrology	
Module	MEASUREMENT OF SURFACE ROUGHNESS	9
and Non	ns – Types of Surface Texture: Surface Roughness Measurement MethodsComp Contact type roughness measuring devices, 3D Surface Roughness Measureme Oughness Measurement – Instruments.	
Module	2 3 INTERFEROMETRY	9
Introduc Interfero	tion, Principles of light interference – Interferometers – Measurement and Ca ometry.	libration – Laser
Module	MEASURING MACHINES AND LASER METROLOGY	9
Microme	ers Microscope – Microhite – Coordinate Measuring Machines – Applications - ter, Laser Scanning gauge, Computer Aided Inspection techniques - In-process Vision system- Applications.	
Module	5 IMAGE PROCESSING FOR METROLOGY	9
model, I	w, Computer imaging systems, Image Analysis, Preprocessing, Human vision sy mage enhancement, gray scale models, histogram models, Image Transforms	
TextBo		
1	"ASTE Handbook of Industries Metrology", Prentice Hall of India Ltd., 1992.	
2	Bewoor, A.K. and Kulkarni, V.A., "Metrology and Measurement", Tata McGraw	r-Hill, 2009.
Referei	nceBooks	
1	Galyer, F.W. and Shotbolt, C.R., "Metrology for engineers", ELBS, 1990.	
2	Gupta, I.C., "A Text Book of engineering metrology", DhanpatRai and Sons, 19	996
3	Jain ,R.K., "Engineering Metrology", Khqanna Publishers, 2008.	
	Rajput,R.K., "Engineering Metrology and Instrumentations", Kataria& S Publishers, 2001.	ons
5	Smith,G.T., "Industrial Metrology", Springer, 2002	
Course	Designers	

S.No	FacultyName	Designation	Department/ College	Emailid
1	R.MAHESH	Assistant Professor	Mech/AVIT	mahesh@avit.ac.in
2				

		AUTC MET			AND	C	Categor	·y	L		T		P	Cro	edit
				ATO			CC		0		0		4	2	2
Prerequi	isite:Ni	l													
CourseC	bjectiv	ve .													
1	To far					tuden	ts to l	nave a	n han	ds on	havii	ng the	basic	conc	epts
2	To im	_	ne kno	owled	ge of v	ariou	ıs met	al for	ming	proce	esses a	and m	anufa	cturin	g
3	To det	termin	ie son	ne me	tal for	ming	paran	neters	for a	give	n shap	epow	der m	etallu	rgy.
4	To un	dersta	nd the	conc	ept of	auto	matio	n							
5	To im	part th	ne kno	wled	ge of l	nydra	ulics a	and pr	neuma	atics o	circuit	s with	n PLC		
CourseO	utcom	es:Or	thes	ucces	sfulco	mple	tiono	f theo	course	e,stud	lentsv	villbe	ablete	0	
	o impar orming			knowl	edge o	on bu	lk me	tal fo	rming	and s	sheet	metal		App	ly
CO2.	lustrate	the c	haract	eristic	es of tl	ne foi	rming	and s	hapin	g pro	cesses	8		App	ly
CO3.	pply th	e con	cepts	of var	ious n	netal 1	formi	ng pro	ocess					App	ly
	evelop ocedur		for me	odern	manu	factui	ring a _l	pplica	tions	using	stanc	lard		App	ly
1 1 1 1	lentify to	-			f auto	matic	on and	deve	lop a	suital	ole sys	stem t	0.0	App	ly
Mapping	gwith P	rogra	ımme	Outc	omesa	ndP	rogra	mmes	Speci	ficOt	ıtcom	es	•		
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
CO1	S	S	S	L	-	-	-	-	-	L	-	-	S	-	-
CO2	S	М	S	М	-	-	-	-	-	L	-	-	S	-	-
CO3	S	S	М	М	-	-	-	-	-	M	-	-	S	-	-
CO4	S	S	S	М	-	-	-	-	-	M	-	-	S	-	-
CO5	S	S	S	M	-	-	-	-	-	L	-	-	S	-	-
S-Strong;	l		Low	I							1	1	1	1	1

Syllabus

- 1. Determination of strain hardening exponent
- 2. Construction of formability limit diagram
- 3. Determination of efficiency in water hammer forming
- 4. Determination of extrusion load
- 5. Study on two high rolling process
- 6. Simulation of Hydraulic circuits
- 7. Simulation of electro pneumatic circuits
- 8. Simulation of electro hydraulic circuits
- 9. Simulation of PLC circuits
- 10. Software simulation of fluid power circuits using Automation studio.

TextBooks

1 AUTOMATION AND METAL FORMING LAB Manual

CourseDesigners

S.No	FacultyName	Designation	Department/ College	Emailid
1	K.Vijayakumar	AssistantProfessor	Mech/AVIT	vijayakumar@avit.ac.in
2				

			Category	L	Т	Р	Credit
		CIM LAB	СС	0	0	3	2
Prea	mble				<u> 1</u>		
This o	•	ides the in depth knowledge about	CNC machine, CNC	progra	mmir	ng and r	modeling
Prere	equisite – N	IL					
Cour	se Objectiv	e					
1	To discus	s the basics of manual part progra	amming for turning	g and	milli	ng.	
2	To praction subrouting	ce the methodologies for writing tes.	the CNC program	using	g can	ned cyc	cles and
3	To learn a	and write the program using mirro		and ra	dius	compe	nsation
	concept, 1	rectangular and circular pocketing	g.				
4	_	rectangular and circular pocketing about various sensors, transducer					
4	To study		rs and PLC				
5	To study To design	about various sensors, transducer	rs and PLC	nts will	be al	ole to	
5	To study To design	about various sensors, transducer 2D and 3D modelling of mechan	rs and PLC nical components the course, studer	nts will	be al	_	erstand
5 Cour	To study To design se Outcome To stud To learn	about various sensors, transducer a 2D and 3D modelling of mechanics: On the successful completion of about various sensors, transducen the basic knowledge about G and mming knowledge to write the prog	rs and PLC nical components the course, studer cers and PLC M codes and Apply	the		_	
5 Cours	To study To design se Outcome To stud To learn program interpo	about various sensors, transducer a 2D and 3D modelling of mechanics: On the successful completion of about various sensors, transducent the basic knowledge about G and mming knowledge to write the progelation he knowledge of mirroring and subreme the successful completion and subreme the knowledge of mirroring and subreme the successful completion about G and mirroring and subreme the knowledge of mirroring and subreme the successful complete the successful complete the successful complete the successful complete the successful completion of the successful com	rs and PLC nical components the course, studer cers and PLC M codes and Apply ram for linear and o	the		Unde	У
CO1.	To study To design se Outcome To stud To learn program interpo Apply t CNC pro Apply t the diff	about various sensors, transducer a 2D and 3D modelling of mechanics: On the successful completion of about various sensors, transducent the basic knowledge about G and mming knowledge to write the progelation he knowledge of mirroring and subreme the successful completion and subreme the knowledge of mirroring and subreme the successful completion about G and mirroring and subreme the knowledge of mirroring and subreme the successful complete the successful complete the successful complete the successful complete the successful completion of the successful com	rs and PLC nical components the course, studer cers and PLC M codes and Apply ram for linear and or routine concepts to	the circular write t	the	Unde Appl	у

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	L	L	L	L	-	-	-	-	-	-	-	L	L	L	L
CO2	S	S	М	S	-	-	-	-	М	-	-	М	L	L	L
CO3	S	S	S	S	-	-	-	-	М	-	-	М	S	М	М
CO4	S	S	S	S	-	-	-	-	М	-	-	М	S	М	М
CO5	S	S	S	S	-	-	-	-	S		-	S	S	М	S

S- Strong; M-Medium; L-Low

SYLLABUS

LIST OF EXPERIMENTS:

CAM LABORATORY

- 1. Exercise on CNC Lathe: Plain Turning, Step turning, Taper turning, Threading, Grooving & canned cycle
- 2. Exercise on CNC Milling Machine: Profile Milling, Mirroring, Scaling & canned cycle.
- 3. Study of Sensors, Transducers & PLC: Hall-effect sensor, Pressure sensors, Strain gauge, PLC, LVDT, Load cell, Angular potentiometer, Torque, Temperature &
 - Optical Transducers.
- 4. Mini project on any one of the CIM elements is to be done. This can be either a software or hardware simulating a CIM element. At the end of the semester, the

students have to submit a mini report and present his work before a Committee.

CAD LABORATORY

2D modeling and 3D modeling of components such as

- 1. Bearing
- 2. Couplings
- 3. Gears
- 4. Sheet metal components
- 5. Jigs, Fixtures and Die assemblies.

Text Books										
1	CAM LAB Manual									
Course Designers										
S.No	Faculty Name	Designation	Department/ College	Email id						
1	Dr.M.SARAVANAN	Asst. Professor	Mech / VMKVEC	saravanan@vmkvec.edu.in						

COMPUTER INTEGRATED	Category	L	Т	Р	Credit
MANUFACTURING SYSTEMS	СС	3	0	0	3

Preamble

The students completing this course are expected to understand the nature and role of computers in manufacturing. The course includes computer aided design, Automatic Manufacturing Systems, Group Technology and FMS, computer aided process planning techniques, shop floor control, types of process control and automatic data capture systems. It exposes the students to various current trends followed in the industries.

Uror	equisit	to: Nil								
FIEI	equisi	IC. IVII								
Cour	se Ob	jective								
1	To understand the importance of CAD and CAM									
2	Тое	o enable student to learn about Automated Manufacturing Systems								
3	To understand about the Group Technology and FMS									
4	To g	o gain knowledge about Process Planning								
5	To enable students to learn about types of process control and automatic data capture									
Cour	se Ou	tcomes: On the successful completion of the course, students will be a	ble to							
CO1.		Discuss the basic concepts of Computer Aided Design and Manufacturing	Understand							
CO2.		Apply the concept of Modeling techniques for designing the roducts	Apply							
		Discuss the basics, working principles of various components of	Apply							
CO3.		Automated Manufacturing Systems.								
CO3.		Automated Manufacturing Systems. Apply the concepts of Group technology and FMS	Apply							
			Apply Apply							

со	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO12	PSO 1	PSO 2	PSO3
CO1	M	L	-	-	1	-	-	ı	1	1	ı	-	1	1	-
CO2	S	М	L	-	ı	-	-	i	1	ı	ı	1	L	ı	L
CO3	S	М	L	-	1	-	-	1	1	1	1	1	М	1	М
CO4	S	S	M	L	1	-	-	1	1	М	ı	-	М	1	М
CO5	S	S	S	М	1	-	-	i	ı	М	1		L	1	L
CO6	S	S	S	М	S	-	-	-	-	S	-	-	L	-	L

S- Strong; M-Medium; L-Low

Syllabus

INTRODUCTION 6

Introduction to CAD, CAM, CAD/CAM and CIM - Evolution of CIM - CIM wheel and cycle - Production concepts and mathematical models - Simple problems in production models - CIM hardware and software - Major elements of CIM system - Three step process for implementation of CIM - Computers in CIM - Computer networks for manufacturing - The future automated factory - Management of CIM - Impact of CIM on personnel - CIM status.

AUTOMATED MANUFACTURING SYSTEMS

10

Automated production line – system configurations, work part transfer mechanisms – Fundamentals of Automated assembly system – System configuration, Part delivery at workstations – Design for automated assembly – Overview of material handling equipments – Consideration in material handling system design – The 10 principles of Material handling. Conveyor systems – Types of conveyors – Operations and features.

Automated Guided Vehicle system – Types of vehicles and AGVs applications – Vehicle guidance technology – Vehicle management and safety.

Storage system performance – storage location strategies – Conventional storage methods and equipments – Automated storage/Retrieval system and Carousel storage system

Deadlocks in Automated manufacturing systems – Petrinet models – Applications in Dead lock avoidance.

GROUP TECHNOLOGY AND FMS

10

Part families – Visual – Parts classification and coding – Production flow analysis – Grouping of parts and Machines by rank order clustering method – Benefits of GT – Case studies.

FMS – Components – workstations – FMS layout configurations – Computer control systems – FMS planning and implementation issues – Architecture of FMS – flow chart showing various operations in FMS – Machine cell design – Composite part concept, Holier method, Key machine concept – Quantitative analysis of FMS – Bottleneck model – Simple and complicated problems – Extended Bottleneck model - sizing the FMS – FMS applications, Benefits.

PROCESS PLANNING 10

Process planning – Activities in process planning, Informations required. From design to process planning – classification of manufacturing processes – Selection of primary manufacturing processes – selecting among casting process, forming process and machining process. Sequencing of operations according to Anteriorities – various examples – forming of Matrix of Anteriorities – case study.

Typical process sheet – case studies in Manual process planning.

Computer Aided Process Planning – Process planning module and data base – Variant process planning – Two stages in VPP – Generative process planning – Flow chart showing various activities in generative PP – Semi generative process planning.

TYPES OF PROCESS CONTROL AND AUTOMATIC DATA CAPTURE

9

Introduction to process model formulation – linear feedback control systems – Optimal control – Adaptive control –Sequence control and PLC. Computer process control – Computer process interface – Interface hardware – Computer process monitoring – Direct digital control and Supervisory computer control.

Text Boo	oks
1	Mikell.P.Groover "Automation, Production Systems and Computer Integrated manufacturing", Pearson Education 2001.
2	Radhakrishnan P, Subramanyan.S. and Raju V., "CAD/CAM/CIM", 2nd Edition New Age International (P) Ltd., New Delhi, 2000.
Referen	ce Books
1	James A.Retrg, Herry W.Kraebber, "Computer Integrated Manufacturing", Pearson Education, Asia, 2001.
2	Gideon Halevi and Ronald D.Weill, "Principles of Process Planning", Chapman Hall, 1995.
3	Viswanathan, N., and Narahari, Y., "Performance Modeling and Automated Manufacturing Systems", Prentice Hall of India Pvt. Ltd., 2000.

4	Kant Vajpayee,S., "Computer II New Delhi, 2007.	Kant Vajpayee,S., "Computer Integrated Manufacturing", Prentice Hall of India, New Delhi, 2007.								
Alavudeen and Venkateshwaran, "Computer Integrated Manufacturing", PHI Learning Pvt. Ltd., New Delhi, 2008.										
Course Designers										
S.No	Faculty Name	Email id								
S.No	Faculty Name Dr.M.SARAVANAN	Email id saravanan@vmkvec.edu.in								

	ME	ETAL	CUTT	'ING '	ГНЕО	RY A	ND		Ca	tegory	L	T	P	Cı	redit
	PR	ACTIO								CC	3	0	0		3
Prerec NIL	quisite	e													
Cours	e Obj	ective													
1 T	o stud	dy the	variou	ıs desi	gn co	nsider	ations	for to	oling.						
2 T	o enal	ble stu	dents	unders	tand th	neir kn	owled	ge on	Toolin	g for M	letal re	noval pro	cess.		
3 7	Γο ass	ess va	rious N	Aetal f	ormin	g Proc	ess an	d its ap	plicat	ions					
4	To gain knowledge Inspection and Gauging in Engineering applications.														
5	Devel	lop kn	owled	ge in	tooling	g and	work l	noldin	g devi	ces					
Cours	e Out	comes	s: On t	the suc	ccessfu	ıl com	pletio	n of tl	ne cou	rse, stu	dents v	will be ab	le to		
CO1.		assess		us typ	es of '	Toolir	ng in N	Manufa	acturii	ng and		Unde	rstand		
CO2.			Jigs a					en Par	ameter	rs .		Apply			
CO3.								nd Me		ning Pr	ocess	Apply			
CO4.										sing Cl	MM	Apply			
CO5.	Des	ign ar	nd Dev	elop t	ooling	g for F	lexibl	e Man	ufactu	ıring		Analyze			
Марр	ing w	ith Pr	ogram	me O	utcom	es and	d Prog	gramn	ne Spe	cific O	utcome	s			
СО	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO12	PSO 1	PS O 2	PSO 3
CO1	S	L	L	L	-	-	-	S	S	S	-	-	S	-	-
CO2	S M M L S S S -								-	S	-	-			
CO3	S M M L S S -							-	S	-	-				
CO4	O4 S M M L S S S -							-	-	S	-	-			
CO5	; S M M M M S S S S -									-					
S-Stro	ong; N	I-Med	lium;	L-Lov	7	1	l	1	<u> </u>	<u>l</u>	<u>l</u>	<u> </u>	<u> </u>	1	

Syllabus Module – I INTRODUCTION 9 hrs

Manufacturing Processes-objectives of manufacturing processes-classification of manufacturing process- Objectives of Tool design-tool design process- Nature and scope of Tool engineering principles of economy for tooling-problems of economy in tooling-planning and tooling for economy Manufacturing principles applicable to process and tool planning-tool control-tool maintenance-tool materials and its selection

Module – II TOOLING FOR METAL REMOVAL PROCESSES 12 hrs

Traditional machining processes -work and tool holding devices-tool nomenclatures Mechanism of machining-force temperature and tool life of single point tool-multipoint tools -tool design-tool wear special processes-capstan and turret lathe-tooling layout of automats-tooling in NC and CNC machines-tooling for machining centres-CAD in tool design- Jigs and fixtures-design-Non-traditional material removal processes mechanical, electrical thermal and chemical energy processes-principles operation equipment-tooling parameters- Advantages, disadvantages and Applications.

Module – III	TOOLING FOR METAL FORMING PROCESSES	9hrs

Classification of Forming processes- Types of presses-design of -blanking and piercing dies-simple, compound, combination and progressive dies- Drawing dies - Bending dies-forging dies-plastic moulding dies. Applications of dies.

Module – IV	TOOLING FOR METAL CASTING AND METAL	9 hrs
	JOINING PROCESSES	

Tools and Equipment for moulding-patterns—pattern allowances — pattern construction-die casting tools- mechanization of foundries. Tooling for Physical joining processes Design of welding fixtures — Arc welding, Gas welding, Resistance welding, laser welding fixtures- Tooling for Soldering and Brazing Tooling for Mechanical joining processes

Module – V TOOLING FOR INSPECTION AND GAUGING 6 hrs

Survey of linear and angular measurements-standards of measurement-design and manufacturing of gauges- measurement of form- Inspection bench centre-co-ordinate measuring machine-tooling in CMM. Applications of CMM.

TEXT BOOKS

- 1. Kalpak Jian S., Manufacturing Engineering and Technology Addison Wesley.
- 2. Hoffman E.G Fundamentals of tool design SME .

REFERENCE BOOKS

- Cyril Donaldson Tool Design, Tata McGraw Hill.
 L E Doyle Tool Engineering Prentice Hall.
 Wellar, J Non-Traditional Machining Processes, SME.

SL.No	Faculty Name	Designation	Department/ Name of the College	Email id		
1	C.Thiagarajan	Associate Professor	Mechanical/AVIT	cthiagarajan@avit.ac.in		

		F	MET FORM		<u>.</u>	C	ategoi	·y	L		T		P	Cr	edit
		PROCESS			CC			2 0			3				
Prereq	quisite: -														
Course	e Objecti	ive													
1	Selecti	on of s	suitab	le me	tal for	ming	techn	iques							
2	Calcul	ation o	of forc	e in n	netal 1	formi	ng pro	cess							
3	Evalu	ation o	of diff	erent	meth	ods ar	nd tecl	nniqu	es for	meta	l forn	ning a _l	pplic	ations	
Course	e Outcon	nes: O	n the	succ	essful	comp	oletio	n of tl	he coi	ırse,	stude	nts w	ill be	able	to
CO1.	Demons temperat			_		-	_	-				ess and	d	Under	stand
CO2.	Apply f	orging	load	calcu	lation	s to e	valuat	e the	impac	et in t	he pro	ocess		Apply	7
CO3.	Analyse rolling p			ces a	nd ge	ometr	rical re	elatio	nships	that	occur	in a		Analy	ze
CO4.	Analyse lubricati								terms	of d	eform	ation,		Analy	ze
CO5.	Determine the form			cation	of va	rious	sheet	metal	l form	ing n	nethod	ds witl	hin I	Evalua	te
CO6.	Analyse					nods a	ınd te	chniq	ues in	meta	l forn	ning		Analy	ze
Mappi	ing with	Progra	amme	e Out	come	s and	Prog	ramn	ie Sp	ecific	Outo	omes			
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 1	PO 1	PO 1	PS O	PS O	PSO 3
CO	1														
CO2	2														
CO	3														
CO ₄	4														
CO:	5														
CO	5														
CO	7														
S- Stron	ng; M-Med	lium; L	-Low												

Syllabus		
Module	1 Fundamentals of Metal working	7
	ation of Forming Process, Mechanics of Metal working, Flow Stress det ture in Metalworking, influence of Friction and Lubrication	ermination,
Module	2 Forging	7
	ation of Forging process, Forging equipments, open and closed die forging on of forging loads, Forging defects	5,
Module	3 Rolling	7
	ation of Rolling process, Rolling mills, Hot-Rolling, Cold-Rolling, Forces ical Relationship in rolling, Rolling defects	s and
Module	4 Extrusion and drawing	8
process,	ation, Process parameters, equipment used, Lubrication and Defects in ext Analysis of the extrusion process, Hydrostatic extrusion, extrusion of tubin applications. Rod and wire drawing, Analysis of wire drawing, Applicati	ng-
Module	5 Sheet-Metal forming	7
	Methods, Shearing and blanking, Bending, Stretch forming, Deep drawing eria, Defects	, Forming
Module:	6 Advancements in Metal Forming	9
Explosive	forming, Electro hydraulic forming, magnetic pulse forming, super plas	tic forming,
electro fo	orming - fine blanking HERF- LASER beam forming-Application	of powder
metallurg	y in forming	
Text Boo	oks	
	B.L.Juneja, (2012), Fundamentals of Metal Forming Processes, New Age International, 2nd Edition	
	Helmi A. Youssef, Hassan A. El-Hofy, Mahmoud H. Ahmed, (2011), Mar Fechnology: Materials, Processes, and Equipment, CRC Press, Taylor & F	
Referen	ce Books	
	George E Dieter, Mechanical Metallurgy, Third Edition Tata McGraw Hill PVT Ltd	l.Education
2 A	SM Hand book, Forming and Forging, Ninth edition	
•	ALTAN.T, SOO-IK-oh, GEGEL, HL – Metal forming, fundamentals and Applications, American Society of Metals, Metals Park, Ohio,	
4 N	farciniak, Z., Duncan J.L., Hu S.J., 'Mechanics of Sheet Metal Forming', I	Butterworth-
H	leinemann An Imprint of Elesevier, 2006	

5	Heinz Tschaetsch,(2005), Metal Forming Practise, Springer Berlin Heidelberg New York											
Cours	Course Designers											
S.No	Faculty Name	Designation	Department / College	Email id								
1	J. SENTHIL Associate Professor Mech / AVIT jsenthil@avit.ac.in											
_												

]	MOD	ELLI	ING		Ca	tegor	y]	L	T	P	Cre	edit
		A		ANAI LAB	LYSIS	8		CC		0 0		4	2	2
Preamble To provide l	ands-o	n exp	erienc	e to tl	he stu	dents	in ana	alysis	softwa	re.	•			
Prerequisit	9													
Course Obj	ective													
1 Learn	basic p	rocedi	ure of	finite	elem	ent an	alysis	S						
2 Use co	mputer	r as a t	tool in	analy	ysis									
3 Analys	sis of m	odele	d part	s										
4 Analys	sis of o	ne and	l two-	dimer	nsiona	l prob	olems	using	softwa	are				
5 To mo	del mu	lti-din	nensio	nal h	eat tra	nsfer	probl	ems u	sing A	NSYS				
Course Out	comes	On t	he su	ccessf	ful co	mplet	ion o	f the c	course	, stude	nts will	be abl	e to	
	oly the lerials	basic	conce	pts to	stress	and s	strain	proble	ems for	differ	ent	U	ndersta	nd
CO2. Sol	ve the f	inite e	lemei	nt pro	blems	to tru	isses,	beams	s and f	rames			Apply	
CO3. App	oly the	bucl	kling	anal	ysis ,	Stres	ss ana	lysis	of axi	-symn	netry		Apply	
	oly Tra lysis	nsien	t therr	nal co	onduct	ion a	nd Co	nduct	ive hea	it trans	fer		Apply	
CO5. Sol	ve linea	ır, non	ı-linea	r and	Harm	onic	analys	sis pro	blems				Apply	
Mapping w	ith Pro	gram	me O	utcor	nes ai	nd Pr	ograr	nme S	Specifi	c Outc	comes	I		
CO PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1 S	L	L	L	L	L	-	-	-	-	-	L	M	S	М
CO2 S	S	M	L	S	M	-	-	-	L	-	M	M	М	S
CO3 S	S	S	S	S	M	-	-	M	L	-	L	М	M	S
CO4 S	S	S	M	S	M	-	-	M	L	-	L	M	M	S
CO5 S	S	S	S	S	L	-	-	-	L	-	L	М	М	S
S- Strong; M-	Medium	; L-Lo	w		1	1	1					1		

SYLLABUS

- 1. Study of analysis and its benefits
- 2. Stress analysis of cantilever and simply supported beam
- 3. Application of distributed loads
- 4. Nonlinear analysis of cantilever beam
- 5. Buckling analysis
- 6. Stress analysis of axi-symmetry vessels
- 7. Static analysis of two dimensional truss
- 8. Transient thermal conduction
- 9. Conductive heat transfer analysis
- 10. Plane stress bracket
- 11. Modal analysis of simply supported beam
- 12. Harmonic analysis of a cantilever beam

Text Books

1 Modelling and Analysis lab Manual

Reference Books

- 1 Hutton, D.V., "Fundamentals of Finite Element Analysis", McGraw Hill, International Edition, 2004.
- 2 Chandrupatla, T.R., Belegundu, A.D., "Introduction to Finite Elements in Engineering", Prentice Hall of India, 2002.

S.No.	Faculty Name	Designation	Department/Name of the College	Email id
1	J.SANTHOSH	Assistant Professor	Mech / VMKVEC	santhosh@vmkvec.edu.in

			P	ROJI WOF			Cat	egory]	L	Т		P	Cred	lit
		PHASE II					(CC 0					24	24 12	
Prerequisite:Nil															
Cou	rseOl	jectiv	e												
1	,	To solv	ve the	identi	fied p	roblen	n base	d on t	he for	mulat	ed me	thodo	logy.		
2	,	To dev	elop s	kills t	o anal	yse an	d disc	cuss th	e test	result	s, and	make	concl	usions.	
Cour	rseOu	ıtcome	es:On	thesu	ccessf	ulcon	npleti	onof t	hecou	ırse,st	udent	tswill	oeable	eto	
CO1	· ta	n comp ke up a esign a	any ch	alleng	ing pi	actica	l prob				-		_	Create	
Map	pingv	with P	rogra	mmeC	Outco	mesan	dPro	gramı	meSp	ecific(Outco	mes			
СО	PO	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
CO1	S	S	S	М	M	M	M	M	S	S	S	M	S	M	M
S-Str	S-Strong;M-Medium;L-Low														

Syllabus

The student should continue the phase I work on the selected topic as per the formulated methodology under the same supervisor. At the end of the semester, after completing the work to the satisfaction of the supervisor and review committee, a detailed report should be prepared and submitted to the head of the department. The students will be evaluated based on the report submitted and the viva-voce examination by a panel of examiners including one external examiner

S.No	FacultyName	Designation	Department/ College	Emailid
1	A.Elanthirayan	Associate Professor	MECHANICAL/ AVIT	elanthirayan@avit.ac.in

					O	PTIM	IIZA'	TION	$\left \mathbf{c} \right $	ategor	y L	T	P	Cr	edit
								FOR RING		CC	2	1	0		3
Pream Optimi involve Scienc Human	izatio es use es in	of M	Iather overin	natics g nev	s, Stat w info	istics, ormat	, Man ion a	agem nd kn	ent, I	nforma	tion T	echnolo	ogy and	d Infor	matio
Prereq	uisite	e-NIL													
Course	eObje	ective													
1 Т	o lea	rn bas	sic pri	incipl	es of	optim	izatio	n							
2 T	To Stu	ıdy th	e met	hods	of mi	nimiz	ation								
3 T	o app	oly the	e cons	strain	ed opt	timiza	ation 1	techni	ques						
4 To analyze the unconstrained optimization techniques															
To learn the application of heuristics in optimization															
Course	eOuto	comes	:Ontl	ne suc	cessf	ulcom	pleti	onoftl	ecou	rse,stu	dentsv	villbeal	oleto		
	To un		and th	e for	mulat	ion ar	nd cla	ssifica	ation	of opti	mizatio	on	Un	derstan	ıd
CO2.	Solve	the p	roble	ms us	ing th	ne mir	nimiz	ation 1	echn	iques			Ap	ply	
CO3.	Apply	y the o	direct	and i	ndired	et met	hods	in opt	imiza	ation te	chniqu	ies	Ap	ply	
CO4.	Solve	the n	nulti v	variab	le und	constr	ained	optin	nizati	on tecl	nnique	S	Ap	ply	
CO5.	Unde	rstand	the ap	pplica	tion o	f heur	ristics	in op	timiz	ation			Ap	ply	
Mappi	ngwi	thPro	gram	meOı	utcom	esano	dProg	ramn	neSpe	ecificO	utcom	es	·		
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1.	S	L	L	L	L	1	1	-	-	-	-	ı	М	S	М
CO2.	S	S	S	М	М	-	-	-	-	-	-	-	М	М	S
CO3.	S	S	S	S	М	-	L	-	М	L	-	-	М	М	S
CO4.	8	Ø	Ø	Ø	Ø	ı	L	-	М	L	-	1	М	М	S
CO5.	S	S	S	S	М	-	L	-	М	L	-	-	М	М	S
S-Stron	g;M-N	Iedium	;L-Lo	w									•	•	-

SYLLABUS

INTRODUCTION TO OPTIMIZATION

Formulation of an optimization problem- Classification of optimization problem – optimization techniques-Classical optimization technique – Single variable optimization – Multi variable optimization algorithms

MINIMIZATION METHODS

One dimensional minimization methods: unimodal function – elimination methods: unrestricted search, exhaustive search, Dichotomous search, Fibonacci methods, Golden section methods, Interpolation methods: Quadratic and cubic interpolation methods.

CONSTRAINED OPTIMIZATION TECHNIQUES

Optimization with equality and inequality constraints - Direct methods - Indirect methods using penalty functions, Lagrange multipliers - separable programming and Geometric programming

UNCONSTRAINED OPTIMIZATION TECHNIQUES

Multi variable unconstrained optimization techniques: Direct search methods: Random search method, univariate method, pattern search method, steepest descent method and Conjugate gradient method.

APPLICATIONS OF HEURISTICS IN OPTIMIZATION

Heuristics-Introduction-Multi objective optimization: Genetic algorithms and Simulated Annealing techniques; Neural network & Fuzzy logic principles in optimization

Text Books

- 1 Kalyanamoy Deb, "Optimization for Engineering design algorithms and Examples", Prentice Hall of India Pvt. 1995.
- 2 Rao, Singaresu, S., "Engineering Optimization Theory & Practice", New Age International (P) Limited, New Delhi, 2000.

Reference Books

1

Johnson Ray, C., "Optimum design of mechanical elements", Wiley, John & Sons, 1990

Goldberg, D.E., "Genetic algorithms in search, optimization and machine", Barnen, Addison-Wesley, New York, 1989.

S. No	FacultyName	Designation	Department/ Nameofthe College	Emailid
1.	J.Santhosh	Assistant Professor	Mech/VMKVEC	santhosh@vmkvec.edu.in

ELECTIVE COURSES FOR SEMESTER - 1

	DESIGN FOR MANUFACTURING AND ASSEMBLY	Category	L	Т	P	Credit					
	AND ASSEMBLI	EC	3	0	0	3					
Preamble											
	lents learn about product development, de	esign process	s, Princi	ples of a	assembl	y and					
Reliability	Reliability										
Prerequisite : NIL											
Course Object	ive										

- 1 Understand the product development cycle.
- To know the manufacturing issues that must be considered in the mechanical engineering design process.
- 3 To know the principles of assembly to minimize the assembly time
- 4 To know the effect of manufacturing process and assembly operations on the cost of product.
- To be familiar with tools and methods to facilitate development of manufactural mechanical designs

Course Outcomes: On the successful completion of the course, students will be able to

CO1.	Recognize the various product development cycle.	Apply
CO2.	Analyzing the manufacturing issues that must be considered in the mechanical engineering design process.	Analyze
CO3.	Analyzing the principles of assembly to minimize the assembly time	Analyze
CO4.	Analyzing the effect of manufacturing process and assembly operations on the cost of product	Analyze
CO5.	Recognize familiar with tools and methods to facilitate development of manufactural mechanical designs.	Analyze

Mapping with Programme Outcomes and Programme Specific Outcomes

co	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	M	L	L		-	-	-	-	-		S		-
CO2	S	S	S	M	M	•	•	-	•	-	-		S	•	-
CO3	S	S	S	M	M	•	•	-	•	-	-		S	•	-
CO4	S	S	S	M	M		•			-	-	-	S		-
CO5	S	S	S	M	M	-	-		-	-	-		S		-

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION

Introduction Need Identification and Problem Definition, Concept Generation and Evaluation, Embodiment Design, Selection of Materials and Shapes.

PROPERTIES OF MATERIALS

Properties of Engineering Materials, Selection of Materials – I, Selection of Materials – II, Case Studies – I, Selection of Shapes, Co-selection of Materials and Shapes, Case Studies – II.

MANUFACTURING PROCESSES

Selection of Manufacturing Processes, Review of Manufacturing Processes, Design for Casting, Design for Bulk Deformation Processes, Design for Sheet Metal Forming Processes, Design for Machining, Design for Powder Metallurgy, Design for Polymer Processing, Co selection of Materials and Processes, Case-Studies – III

ASSEMBLY

Design for Assembly, Review of Assembly Processes, Design for Welding – I, Design for Welding – II, Design for Brazing and Soldering, Design for Adhesive Bonding, Design for Joining of Polymers, Design for Heat Treatment, Case-Studies - IV

RELIABILITY

Design for Reliability, Failure Mode and Effect Analysis and Quality, Design for Quality, Design for Reliability, Approach to Robust Design, Design for Optimization.

Text Books

- 1. M F Ashby and K Johnson, Materials and Design the art and science of material selection in product design, Butterworth-Heinemann, 2003
- 2. G Dieter, Engineering Design a materials and processing approach, McGraw Hill, NY, 2000.
- 3. M F Ashby, Material Selection in Mechanical Design, Butterworth-Heinemann, 1999.
- 4. T H Courtney, Mechanical Behavior of Materials, McGraw Hill, NY, 2000.
- 5. K G Swift and J D Booker, Process selection: from design to manufacture, London: Arnold, 1997

Reference Books

- 1. S S Rao, Engineering Optimization: theory and practice, John Wiley, NY, 1996.
- 2. G Boothroyd, P Dewhurst and W Knight, Product design for manufacture and assembly, John Wiley, NY: Marcel Dekkar, 1994.
- 3. J G Bralla, Handbook for Product Design for Manufacture, McGraw Hill, NY, 1998.
- 4. Houldcroft, Which Process an introduction to welding and related processes and guide to their selection, Cambridge, Abington Pub., 1990.
- 5. ASTM Design handbook.

Alternative NPTEL/SWAYAM Cours	1	Alternative	NPTEL	Alternative N	'SWAYAM Cou	irse
---------------------------------------	---	-------------	-------	---------------	-------------	------

S.No	NPTEL /SWAYAM (Course Name	Instructor	Institution	Duration	
	Nil					
Course	e Designers					
S.No	Faculty Name	Designation	Department/Na the College	me of	Email id	
1	T. Raja	Associate Professor	MECH/VMKV	EC	rajat@vmkv	ec.edu.in
2						

FLUID POWER AUTOMATION	Category	L	Т	P	Credit
PLOD TO WER AUTOMATION	EC	3	0	0	3

Preamble

To make the students learn about need for automation, fluid power generating, utilization, controls, regulation elements, hydraulic circuits design and electrical control circuits.

Prerequisite: NIL

Course Objective

- 1 Understand the need for automation.
- 2 To know the fluid power generating and utilizing elements
- 3 To know the principles of control and regulation elements
- 4 To know the typical industrial hydraulic circuits design.
- 5 To be familiar with electrical control of pneumatic and hydraulic circuits

Course Outcomes: On the successful completion of the course, students will be able to

CO1.	Recognize the various need for automation.	Apply
CO2.	Analyzing the fluid power generating and utilizing elements.	Analyze
CO3.	Analyzing the principles of control and regulation elements	Analyze
CO4.	Analyzing the typical industrial hydraulic circuits design.	Analyze
CO5.	Recognize familiar with electrical control of pneumatic and hydraulic circuits.	Analyze

Mapping with Programme Outcomes and Programme Specific Outcomes

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	M	L	L	-	-	-	-	-	-	-	S	-	-
CO2	S	S	S	M	M	-	-	-	-	-	-	-	S	-	-
CO3	S	S	S	M	M	-	-	•	•	-	-	•	S	•	-
CO4	S	S	S	M	M	-	-	-	-	-	-	-	S	-	-
CO5	S	S	S	M	M	-	-	-	-	-	-	-	S	-	-

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION

Need for Automation, Hydraulic & Pneumatic Comparison – ISO symbols for fluid power elements, Hydraulic, pneumatics – Selection criteria.

FLUID POWER GENERATING/UTILIZING ELEMENTS

Hydraulic pumps and motor gears, vane, piston pumps-motors-selection and specification-Drive characteristics – Linear actuator – Types, mounting details, cushioning – power packs – construction. Reservoir capacity, heat dissipation, accumulators – standard circuit symbols, circuit (flow) analysis.

CONTROL AND REGULATION ELEMENTS

Direction flow and pressure control valves-Methods of actuation, types, sizing of ports-pressure and temperature compensation, overlapped and underlapped spool valves-operating characteristics-electro hydraulic servo valves-Different types-characteristics and performance.

CIRCUIT DESIGN

Typical industrial hydraulic circuits-Design methodology — Ladder diagram-cascade, method-truth table-Karnaugh map method-sequencing circuits-combinational and logic circuit.

ELECTRO PNEUMATICS & ELECTRONIC CONTROL OF HYDRAULIC AND PNEUMATIC CIRCUITS

Electrical control of pneumatic and hydraulic circuits-use of relays, timers, counters, Ladder diagram.

Programmable logic control of Hydraulics Pneumatics circuits, PLC ladder diagram for various circuits, motion controllers, use of field busses in circuits. Electronic drive circuits for various Motors.

Text Books

- 1. Antony Esposito, Fluid Power Systems and control Prentice-Hall, 1988
- 2. Herbert R. Merritt, Hydraulic control systems, John Wiley & Sons, Newyork, 1967

3. Dudbey.A.Peace, Basic Fluid Power, Prentice Hall Inc, 1967

Reference Books

- 1. Peter Rohner, Fluid Power logic circuit design. The Macmillan Press Ltd., London, 1979
- 2. E.C.Fitch and J.B.Suryaatmadyn. Introduction to fluid logic, McGraw Hill, 1978.
- 3. W.Bolton, Mechatronics, Electronic control systems in Mechanical and Electrical Engineering Pearson Education, 2003.

Alternative NPTEL/SWAYAM Course

S.No	NPTEL /SWAYAM Course Name	Instructor	Host Institution	Duration
	Nil			

S.No	Faculty Name	Designation	Department/Name of the College	Email id
1	R.Venkatesh	Assistant Professor	MECH/VMKVEC	venkatesh@vmkvec.edu.in
2				

			N	IICR	<u> </u>			O .4.		_		T.			G 124			
		M		FCT		IG	-	Cate EC	gory	1 L 3		T 0	P 0		Credit 3			
Prea	mble						ļ					<u> </u>						
Tical		o pre	sent 1	the ba	sics (of mi	cro	machin	ning to	echnol	ogy aı	nd its a	pplic	cations.				
Prere NIL	equisit	e																
Cour	se Ob	jectiv	v e															
	To lea			he fu	ından	nental	as	well as	s adva	inced l	knowle	edge o	f Mio	ero mad	chining			
	To exp			sic p	rincip	les a	nd 1	mechan	ism c	of Trad	itiona	Micro	o ma	chining	and			
3	To illu	strate	the b	oasic ₁	princi	iples	and	applic	ations	of Ac	lvance	ed Mic	ro M	achinir	ıg.			
	To der Micro				sic pr	rincip	les	and ap	plicati	ions of	f diffe	rent A	brasi	ve base	d			
5	To illu	strate	the f	funda	ments	of N	1EN	AS and	its te	chniqu	ies.							
Cour	se Ou	tcom	es: O	n the	succ	essfu	ıl co	omplet	ion o	f the c	ourse	, stude	ents v	will be	able to			
CO1.	Expla indus	in th tries	e bas	ic nee	ed of	Micro	o N	ano Ma	anufac	cturing	in dif	ferent		Under	stand			
CO2.	Sumr	nariz	e the	tradit	ional	Micr	o N	lano M	anufa	cturing	g tech	niques	•	Under	stand			
CO3.	Demo Micro						iffe	rent me	echani	isms ii	ı Adva	anced		Apply				
CO4.	Utiliz Manu			ortanc	e of A	Abras	ive	s in Mi	cro N	ano N	ano			Apply				
CO5.	Idant	ify th	e nee	d of l	MEM	S in	Mic	cro Nan	ю Ма	chinin	g.			Apply				
CO6.	Perfo impro	m the	Nan nanuf	o Mar acturi	nufac ng te	turing chnol	g ca .ogy	pabiliti in the	es in regio	order n.	to dive	ersify a	and	Apply				
Mapı	ping w	ith P	rogr	amm	e Ou	tcom	es a	and Pro	ogran	nme S	pecifi	c Outo	come	es				
CO	PO1	PO 2	PO 3	PO 4	PO 5	PO 6	P O	PO 8	PO 9	PO1 0	PO1	PO1 2	PS O	PS O	PSO 3			
CO1	S	L	-	-	<u> </u>	U					1		S					
CO2	S	L	_	_									S					
CO3	S	M	L	-									S					
CO4	S	M	L	-									S					
CO5	S	M	L	-									S					
CO6	S	S	S	S									S					

S- Strong; M-Medium; L-Low	

SYLLABUS

INTRODUCTION TO MICRO MACHINING

Need-evolution- fundamentals and trends in micro technologies-Consequences of the technology and society - challenges to manufacturing technology-evolution of precision in manufacturing, tooling and current scenario - Micro materials, fabrication tools, requirements and applications.

TRADITIONAL MACHINING

Theory of micro machining – Chip formation – Size effect in micro machining – Micro turning - Micro milling - Micro drilling - Micro machining tool design – Precision Grinding – Partial ductile mode grinding – Ultra precision grinding.

ADVANCED MICRO MACHINING

Introduction-Classification - Mechanical Micromachining (AJM, USM)-Thermal Micromachining (EDM, LBM, EBM)-Electrochemical and Chemical Micromachining-Ion Beam Machining-Photochemical Etching

ABRASIVE BASED MICRO MACHINING

Abrasive Flow Finishing (AFF) - Magnetic Abrasive Finishing (MAF)-Magnetorheological Finishing - Magnetorheological Abrasive Flow Finishing - Elastic Emission Machining (EEM) and Magnetic Float Polishing

MEMS

Introduction to MEMS, Definitions and classifications-History – applications - MEMS Market - Bulk Micro machining - Wet and Dry Etching - Surface Micromachining – Chemical –Vapor Deposition – Lithography - Wafer Bonding.

Text Books:

- 1 V.K.Jain, Introduction to Micromachining, Narosa publishing House, New Delhi.
- Tai-Ran Hsu, "MEMS and Microsystems: Design and Manufacture," McGraw-Hill, 2008.

Reference Books:

- 1 J. Paulo Davim, Mark J. Jackson (2009) Nano and Micromachining, John Wiley &
- 2 V. K. Jain (2012), Micromanufacturing Processes, CRC Press.
- 3 Mohamed Gad-el-Hak (2010) MEMS Introduction and Fundamentals, CRC Press.

Sl.No	Faculty Name	Designation	Department/Nam e of the College	Email id
1	C.THANGAVEL	PROFESSOR	Vinayaka Mission's Kirupananda Variyar Engineering College	thangavel@vmkvec.edu.in
2				

QUALITY AND RELIABILITY ENGINEERIN	G Category	L	Т	P	Credit
	EC	3	0	0	3

Preamble

To expose the students to the various quality control techniques and to understand the importance and concept of reliability

Prerequisite: NIL

Course Objective

- 1 To Understand the techniques of Quality & Process Control
- 2 To Understand process control and acceptance sampling procedure and their application.
- 3 To study about the various Design process and to learn about Taguchi Method.
- 4 To Learn the Concepts of Reliability.
- 5 To analyze the process involved in Design for Reliability.

Course Outcomes: On the successful completion of the course, students will be able to

CO1.	Understand the Various techniques of Quality & Process Control	Understand
CO2.	Understand the process control and acceptance of sampling procedure	Understand
	and their application.	
CO3.	Analyze the various Design process and to learn about Taguchi Method	Analyze
CO4.	Analyze the various Concepts of Reliability Techniques.	Analyze
CO5.	Analyze the various process involved in Design for Reliability	Analyze

Mapping with Programme Outcomes and Programme Specific Outcomes

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	M	L	L	-	-	-	-	-	-		S	-	-
CO2	S	S	S	M	M	•	•	•		-	-	•	S	•	-
CO3	S	S	S	M	M	•	•	•	-	-	-		S	•	-
CO4	S	S	S	M	M	-	-	-	-	-	-	-	S	-	-
CO5	S	S	S	M	M	-	-	-	-	-	-	-	S	-	-

S- Strong; M-Medium; L-Low

SYLLABUS

QUALITY & STATISTICAL PROCESS CONTROL

Quality – Definition – Quality Assurance – Variation in process – Factors – process capability – control charts – variables X, R and X, - Attributes P, C and U-Chart tolerance design. Establishing and interpreting control charts – charts for variables – Quality rating – Short run SPC.

ACCEPTANCE SAMPLING

Lot by lot sampling – types – probability of acceptance in single, double, multiple sampling plans – OC curves – Producer's risk and consumer's risk. AQL, LTPD, AOQL, Concepts – standard sampling plans for AQL and LTPD – use of standard sampling plans.

EXPERIMENTAL DESIGN AND TAGUCHI METHOD

Fundamentals – factorial experiments – random design, Latin square design – Taguchi method – Loss function – experiments – S/N ratio and performance measure – Orthogonal array.

CONCEPT OF RELIABILITY

Definition – reliability vs quality, reliability function – MTBF, MTTR, availability, bathtub curve – time dependent failure models – distributions – normal, weibull, lognormal – Reliability of system and models – serial, parallel and combined configuration – Markove analysis, load sharing systems, standby systems, covarient models, static models, dynamic models.

DESIGN FOR RELIABILITY AND MAINTAINABILITY

Reliability design process, system effectiveness, economic analysis and life cycle cost, reliability allocation, design methods, parts and material selection, derating, stress-strength and analysis, failure analysis, identification determination of causes, assessments of effects, computation of criticality index, corrective action, system safety – analysis of down-time – the repair time distribution, stochastic point processes system repair time, reliability under preventive maintenance state dependent system with repair. MTTR – mean system down time, repair vs replacement, replacement models, proactive, preventive, predictive maintenance maintainability and availability, optimization techniques for system reliability with redundancy heuristic methods applied to optimal system reliability.

Text Books

- 1. Quality Assurance and Total Quality Management (ISO 9000, QS 9000 ISO 14000) by K C Jain and A K Chitale, Khanna Publishers
- 2. Statistical Quality Control by M. Mahajan, Dhanpat Rai & Co. (P) Ltd.
- 3. Quality Control & Application by B. L. Hanson & P. M. Ghare, Prentice Hall of India
- 4. Total Quality Management by Dale H. Besterfield, Carol Besterfield-Michna, Glen H. Besterfield and Mary Besterfield-Sacre, Pearson Education
- 5. Reliability Engineering by Srinath L. S., Affiliated East West Press.

Reference Books

- 1. Amata Mitra "Fundamentals of Quality Control and improvement" Pearson Education, 2002.
- 2. Bester field D.H., "Quality Control" Prentice Hall, 1993.
- 3. Patrick D To' connor, Practical Reliability Engineering, John-Wiley and Sons Inc, 2002
- 4. Charles E Ebling, An Introduction to Reliability and Maintability Engineering, Tata-McGraw Hill, 2000.
- 5. David J Smith, Reliability, Maintainability and Risk: Practical Methods for Engineers, Butterworth 2002.
- 6. Dhillon, Engineering Maintainability How to design for reliability and easy maintenance, PHI, 2008.

Alteri	native NPTEL/SWAY	AM Course			
S.No	NPTEL /SWAYAM	Course Name	Instructor Ho	ost Institution	Duration
	Nil				
Cours	se Designers		·		
S.N o	Faculty Name	Designation	Department/Name the College	Email id	
1	S. Raja	Assistant Professor	MECH/VMKVEC	rajas@vmk	vec.edu.in
2	-				

ELECTIVE COURSES FOR SEMESTER - 2

		FI	NITE E	LEME	NT AP	PLICA	TION	SIN	C	ategor	y L	T	P	Cr	edit
				N	/ANU	FACTU	JRING			EC	3	0	0		3
							-	s of fi	nite e	lement	analys	is (FEA)	of sol	ids, stru	ıcture
Cour	seObje	ective													
1			finite	eleme	nt ana	lysis f	undar	nenta	ls and	formul	ations				
2	•	Study the basics of element properties natural, Triangular & rectangular and one dimensional analysis in solid mechanics and heat transfer.													
3	Formu	Formulation of finite element methods for Two dimensional solids.													
4		Formulate the truss, beam and frame problems and Development of code for one dimensional analysis and validation.													
5		e in so	olids ,	Finite	Eleme	nt an	alysis	of me	tal cu			fer , eff aration		plasticit a,	y and
	Тол											villbeal and no		derstar	ıd
CO1.	num		meth			tion	o for	difford	nt m	chanic	ما مامس	onto	Δ +0	.nlv	
CO2.	l l				ectan				:111 1116	CHAILC	ai eieiii	ents.	Ap	ply	
CO3.		nulate tures.	and s	olve p	roble	ms in	2-D s	tructu	ral sys	stemso	f solids	and the	eir Ap	ply	
CO4.					on an					EA eler	nents s	such as	Ap	ply	
CO5.	l l				_	_		•		heat c		ion,	Ap	ply	
Map	pingwi	thPro	gram	meO	utcom	esan	dProg	ramr	neSpe	ecificO	utcom	es			
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1.	S	L	L	L	L	-	-	-	-	-	-	-	L	-	-
CO2.	S	S	S	М	М	-	-	-	-	-	-	-	М	-	-
CO3.	S	S	S	S	М	-	L	-	М	L	-	-	S	-	-
				S	S	-	L	_	М	L	_	_	S	_	
CO4.	S	S	S	3			_			_					-

SYLLABUS

INTRODUCTION

Fundamentals – Initial, boundary and eigen value problems – weighted residual, Galerkin and Raleigh Ritz methods - Integration by parts – Basics of variational formulation – Polynomial and Nodal approximation.

ONE DIMENSIONAL ANALYSIS

Steps in FEM – Discretization. Interpolation, derivation of elements characteristic matrix, shape function, assembly and imposition of boundary conditions-solution and post processing – One dimensional analysis in solid mechanics and heat transfer.

SHAPE FUNCTIONS AND HIGHER ORDER FORMULATIONS

Shape functions for one and two dimensional elements- Three noded triangular and four nodded quadrilateral element Global and natural co-ordinates—Non linear analysis – Isoparametric elements – Jacobian matrices and transformations – Basics of two dimensional, plane stress, plane strain and axisymmetric analysis.

COMPUTER IMPLEMENTATION

Pre Processing, mesh generation, elements connecting, boundary conditions, input of material and processing characteristics – Solution and post processing – Overview of application packages – Development of code for one dimensional analysis and validation.

ANALYSIS OF PRODUCTION PROCESSES

FE analysis of metal casting – special considerations, latent heat incorporation, gap element – Time stepping procedures – Crank – Nicholson algorithm – Prediction of grain structure – Basic concepts of plasticity and fracture – Solid and flow formulation – small incremental deformation formulation – Fracture criteria – FE analysis of metal cutting, chip separation criteria, incorporation of strain rate dependency – FE analysis of welding.

Text Books

- Hutton, D.V., "Fundamentals of Finite Element Analysis", McGraw Hill, International Edition, 2004.
- 2 Segerlind, L.J., "Applied Finite Element Analysis", John Wiley & Sons, 1984.

Reference Books

1

Reddy, J.N. An Introduction to the Finite Element Method, McGraw Hill,1985.

2	Rao, S.S., Finite Element method in engineering, Pergammon press, 1989.
3	Zienkiewicz, O.C., "Finite Elements and Approximation", Dover International, 2006.
4	Bathe, K.J., Finite Element procedures in Engineering Analysis, 1990
5	Kobayashi,S, Soo-ik-Oh and Altan,T, Metal Forming and the Finite Element Methods, Oxford University Press, 1989.
6	Lewis R.W.Morgan, K, Thomas, H.R. and Seetharaman, K.N. The Finite Element Method in Heat Transfer Analysis, John Wiley, 1994.
7	www.tbook.com
8	www.pollockeng.com

								Categ	gory	L	T	P	•	as an officition, other ergor ble to Under Anal App Under App Under	dit
		IN	IDUS'	ΓRIA	L ER(GONOM	ICS	E	C	3	0	0)	3	
Pream	ble														
	Ac	lapting	the re	equire	ments	of a job to	o the	physical	l need	ds of the	e humai	ns who	perforn	ı it.	
Prereg	uisite	: NIL	,												
Course	e Obje	ctive													
1 T	o optin	nize the	e integ	ration	of ma	n and ma	chine	in orde	r to i	ncrease	produc	tivity w	ith acc	uracy	
2 T	o enhai	nce hu	man p	erform	nance,	control fa	atigue	and pre	event	accider	nts.				
3 Т	To increase the safety, comfort and performance of a product or an environment, such as an office														
	To understand the environmental ergonomics includes which lighting, noise and vibration,														
	heating and ventilation, platform motion To take into account metabolic cost, measurement and prevention of work strain, and other ergonomic														
						ost, meas workplac		ent and	preve	ention o	1 WOIK	suam, a	ina otne	er ergon	onne
						ful comp		on of th	e co	urse, s	tudent	s will l	oe able	to	
CO1 U	ndersta	nd erg	onomi	ics wit	h hum	an comfo	ort poi	int of vie	ew					Under	stand
				-										Chach	- Turia
	nalyse acute.	the de	gree o	of prote	ection	against d	langer	ous exp	osure	es, whet	her chr	onic		Anal	yse
CO3 A	pply th	e conc	ept of	ergon	omics	design in	equij	pment						App	oly
					_	omic fact numidity	tors R	oom ten	npera	iture, ill	uminat	ion,		Unders	stand
						ork improv od study	vemei	nt techni	iques	like sto	op watc	h		App	oly
						mes and	Prog	gramm	e Sp	ecific (Outcor	nes			
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	P(10	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	-	_	_	-	-	-	-	-	-	M	M	-	-
CO2	S	M	-	_	-	_	_	_	_	-	_	S	M	_	M
CO3	S	S	M	-	-	-	-		•	-	-	S	M	-	M
CO4	S	S	-	-	-	S	-	S	-	-	-	S	M	-	M
CO5	S	S	-	-	S	-	-	-	-	-	-	S	M	-	M
S- Stror	0/		ı; L-L	0W											
SYLL															9
NTRO															
	. of 1	C	0.040	an -:-		and ergo	0 10 0	: 11	f 0 rc	macal.		am am 1	doctor	mh:1	~

ANTHROPOMETRY 10

Physical dimensions of the human body as a working machine – Motion size relationships – Static and dynamic anthropometry – Anthropometric aids – Design principles – Using anthropometric measures for industrial design – Procedure for anthropometric design.

DESIGN OF SYSTEMS 10

Displays – Controls – Workplace – Seating – Work process – Duration and rest periods – Hand tool design - Design of visual displays – Design for shift work.

ENVIRONMENTAL FACTORS IN DESIGN

10

Temperature – Humidity – Noise – Illumination –Vibration – Measurement of illumination and contrast – use of photometers – Recommended illumination levels. The ageing eye – Use of indirect (reflected) lighting – cost efficiency of illumination – special purpose lighting for inspection and quality control – Measurement of sound – Noise exposure and hearing loss – Hearing protectors – analysis and reduction of noise – Effects of Noise on performance – annoyance of noise and interference with communication – sources of vibration discomfort.

WORK PHYSIOLOGY

8

Provision of energy for muscular work — Role of oxygen physical exertion — Measurement of energy expenditure Respiration — Pulse rate and blood pressure during physical work — Physical work capacity and its evaluation.

Reference Books

- 1. Martin Helander, A guide to the ergonomics of manufacturing, East West press, 1996
- 2. E.J. McCormic, Human factors in engineering design, McGraw Hill 1976
- 3. R.S. Bridger Introduction to Ergonomics, McGraw Hill, 1995.

S.No	Faculty Name	Designation	Department/Name of the College	Email id
1	Dr.P.Sellamuthu	Associate Professor	MECH/VMKVEC	sellamuthu@vmkvec.edu .in

LEAN MANUFACTURING	Category	L	T	P	Credit
LEAN MANUFACTURING	EC	3	0	0	3

Preamble

This course provides a technological knowledge for elimination or reduction of waste during manufacturing process, thereby saving materials and also contribute for a green environment.

Prerequisite -NIL

Course Objective

- To provide knowledge of manufacturing processes with special attention to reduction of waste.
- To make the students understand the difference between mass production and lean production.
- 3 To develop skills for handling mechanical tools, testers and equipments.
- To develop skills in handling work sequence in different machines.
 To develop skills in elimination of waste using 5S techniques.
- Course Outcomes: On successful completion of the course, students will be able to

Course	outcomes. On successful completion of the course, students will be used to	
CO1	To know about mechanical manufacturing processes using powered machines.	Remember
CO2	To differentiate between mass production and lean production	Understand
CO3	To describe working on machines using optimum conditions.	Apply
CO4	To demonstrate processes used for value creation on finished products.	Apply
CO5	To demonstrate procedures used for avoiding errors and mistakes.	Apply

Mapping with Programme Outcomes and Programme Specific Outcomes

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	-	-	-	S	S	-	-	-	-	-	S	S	S
CO2	S	S	-	-	-	S	S	S	-	-	-	-	S	S	S
CO3	S	S	S	-	-	S	S	S	-	-	S	-	S	S	S
CO4	S	S	-	-	S	S	S	S	-	-	S	-	S	S	S
CO5	S	S	-	-	-	S	S	S	-	-	S	-	S	S	S

S- Strong; M-Medium; L-Low

Syllabus

UNIT I – CONCEPTS OF LEAN MANUFACTURING - 9 HOURS

Lean process, 3M concept, Key principles and implications of lean manufacturing, Traditional vs Lean manufacturing characteristics, Roadmap for Lean implementation and Lean benefits, Study of Ford and Toyota production system, JIT manufacturing, Lean building blocks.

<u>UNIT II – ADDING VALUE AND REDUCTION OF WASTE - 9 HOURS</u>

Value creation and waste elimination, Types of waste, Pull production and different models, The Kanban system, Continuous flow and Continuous improvement process, Kaizen - Worker involvement, Design of Kanban quantities, Leveled production, Tools for continuous improvement.

<u>UNIT III - JIT, COMPOSITE PART AND CASE STUDIES - 9 HOURS</u>

JIT with cell manufacturing, Part families, Production flow analysis, Composite part concept, Machine cell design, Quantitative analysis, Case studies, Single piece flow.

<u>UNIT IV - VALUE STREAMING AND SIX SIGMA - 9 HOURS</u>

The value stream – Benefits and Mapping process. The Current state map– Mapping icons, Mapping steps, VSM exercises, TAKT time calculations. Six Sigma – Definition, Statistical considerations, Variability reduction, Design of experiments, Six Sigma implementation.

UNIT V - WORK SEQUENCE, MISTAKE PROOFING AND WASTE ELIMINATION - 9 HOURS

Standardized work – Standard work sequence, Timing and working progress. Quality at source – Automation / JIDOKA, Visual management system, Mistake proofing / Poka-Yoke. 5S technique – Elements and waste elimination through 5S, Advantages and Benefits, 5S Audit. Visual control aids for improvement, Flexible work force.

TOTAL: 45 HOURS

Text I	Books
--------	-------

- 1. Toyota Production System -An integrated approach to Just in Time Yasuhiro Monden, Engineering aild Management Press -Institute of Industrial Engineers 1983.
- 2. James P Womack, Daniel T Jones, and Daniel Roos, The Machine that changed the World. The Story of Lean Production Harper Perennial edition published 1991.
- 3. Gemba Kaizen: A Commonsense Approach to a Continuous Improvement Strategy, Second Edition Hardcover 2012 by Masaaki Imai.
- 4. Value Stream Mapping: How to Visualize Work and Align Leadership for Organizational Transformation Paperback 2016 by Karen Martin, Mike Osterling.
- 5. Lean And Six Sigma Six Sigma Black Belt (2007 BOK): Enterprise-Wide Deployment Paper Back by Suvabrata Mitra.

Reference Books

- 1. Learning to See: Value Stream Mapping to Add Value and Eliminate MUDA 1st Edition by Mike Rother and John Shook.
- 2. Getting the Right Things Done: A Leader's Guide to Planning and Execution by Dennis, Pascal (January 1, 2006) by Pascal Dennis.
- 3. The Toyota Way: 14 Management Principles from the World's Greatest Manufacturer by Jeffrey K. Liker.

S.No	Faculty Name	Designation	Department / Name of the College	Email id
1	Dr. Sanjay Singh	Professor	Mech / VMKVEC	sanjay@vmkvec.edu.in

		MA	ATER				IENT A	.ND	Cate	egory	L	T	P		Credi
				LC)GIS	TICS				EC	3	0	0		3
	rse prov						l manago		shoul	d be co	nsidere	d for pr	ofitabil	ity and t	to
Prereq															
Course	Obje	ctive													
1 T	o ensure	e unde	rstand	ing of t	the g	rowth o	of the org	ganiza	tion						
	o gain a an pow			nowled	lge of	the su	rplus caj	pacity	of the	organi	zation,	such as	physica	al facilit	y ,
3 T	o apply	know	ledge (of appl	icatio	n in the	utilizati	ion of	surplu	is fund	of the o	organiza	tion.		
4 T	o gain a	pplica	bility	knowle	edge i	n new r	equirem	ent of	the cu	ıstomer	·s.				
5 T	o analyz	ze way	s to in	crease	com	oany's r	narket s	hare a	nd to t	arget n	ew mar	ket seg	ment.		
							produc								
Course	e Outc	omes:	On t	he suc	cessi	ful con	npletion	n of t	he coi	urse, si	tudent	s will b	e able	to	
CO1 U	ndersta	nd the	scope	e of ope	eratio	ns func	tion in i	ndustr	ial and	l busine	ess orga	nizatio	ns Und	erstand	
			•	•			gement p				C				
CO2 U	ndersta	nd the	scope	of Pur	chasi	ng polic	cies, pro	cedur	es and	Seller 1	elation	ship.	Und	erstand	
	ndersta ew	nd the	Stores	s functi	on, M	laterials	s handliı	ng and	l Netw	ork ana	alysis po	oint of	Und	erstand	
	pply de aterials			sting, I	Mater	ial Req	uiremen	t Plan	ning (MRP) &	k mana	ging	App	ly	
	pply sp		• •		tory s	system a	and Agg	regate	Planr	ning sys	stem for	the giv	en App	ly	
Mappi	ng wit	h Pro	gram	me O	utcor	nes an	d Prog	ramn	ne Sp	ecific (Outcor	nes			
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	M	L	L	-	-	-	-	-	-	-	S	-	-
CO2	S	S	M	M	M	-	-	-	•	-	-	-	S	-	-
CO3	S	S	S	M	M	-	-	-	-	-	-	-	S	-	<u> </u>

S- Strong; M-Medium; L-Low

 \mathbf{S}

 \mathbf{S}

M

M

M

SYLLABUS

CO₄

CO₅

INTRODUCTION

Introduction to materials management – Objectives – Functions – Operating Cycle – Value analysis – Make or buy decisions.

S

MANAGEMENT OF PURCHASE

Purchasing policies and procedures – Selection of sources of supply – Vendor development – Vendor evaluation and rating – Methods of purchasing – Imports – Buyer – Seller relationship – Negotiations.

MANAGEMENT OF STORES AND LOGISTICS

Stores function – Location – Layout – Stock taking – Materials handling – Transportation – Insurance – Codification – Inventory pricing – stores management – safety – warehousing – Distribution linear programming – Traveling Salesman problems – Network analysis – Logistics Management.

MATERIALS PLANNING

Forecasting – Materials requirements planning – Quantity – Periodic – Deterministic models – Finite production.

INVENTORY MANAGEMENT

ABC analysis – Aggregate planning – Lot size under constraints – Just in Time (JIT) system.

Text Books

- 1. Dr.R. Kesavan, C.Elanchezian and B.Vijaya Ramnath, Production Planning and Control, Anuratha Publications, Chennai, 2008.
- 2. G. Reghuram, N. Rangaraj, Logistics and supply chain management cases and concepts, Macmillan India Ltd., 2006.
- 3. Gopalakrishnan.P, Handbook of Materials Management, Prentice Hall of India, 1996.

Reference Books

- 1. Lamer Lee and Donald W.Dobler, Purchasing and Material Management, Text and cases, Tata McGraw Hill, 1996.
- 2. Guptha P.K. and Manmohan, Problems in Operations Research, Suttan Chand & Sons, 2003
- 3. Dr. R. Kesavan, C.Elanchezian and T.SundarSelwyn, Engineering Management Eswar Press 2005

Alternative NPTEL/SWAYAM Course

S.No NPTEL /SWAYAM Course N	ame Instructor	Host Institution	Duration
Nil			

S.No	Faculty Name	Designation	Department/Name of the College	Email id
1	S.DURAITHILAGAR	Associate Professor	MECH/VMKVEC	duraithilagar@vmkvec.e
				du.in
2				

MICRO ELECTRO MECHANICAL SYSTEMS	Category	L	Т	P	Credit
AND NANO TECHNOLOGY	EC	3	0	0	3

Preamble

This course to gives thorough knowledge about the trends in latest manufacturing technologies of Micro Electro Mechanical Systems and also measuring systems to nano scale in Nano Technology. The fabrication processes for development of MEMS devices and systems. Also to impart knowledge to the students about nano materials and various nano measurements techniques.

Prerequisite: NIL

Course Objective

- To understand the broad knowledge of the history, over view, applications and future directions of MEMS.
- To understand the various materials and fabrication techniques about MEMS.
- Identify the suitable applications for sensors and actuators in MEMS.
- Develop the thorough knowledge of the Nano structures and fabrication process in Nano Technology.
- To understand the advanced characterization techniques of Nano materials in Nano Technology.

Course Outcomes: On the successful completion of the course, students will be able to

CO1.	Understand the concepts of MEMS, over view, applications and Future directions of MEMS.	Understand
CO2.	Select suitable materials and fabrication process for MEMS technology.	Apply
CO3.	Select for suitable applications in sensors and actuators in MEMS.	Apply
CO4.	Understand the Nano materials and structures in Nano Technology.	Understand
CO5.	Select the suitable characterizations techniques of Nano materials and Nano Technology.	Apply

Mapping with Programme Outcomes and Programme Specific Outcomes

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	-	-	-	-	-	-	-	-	-	M	M	-	-
CO2	S	M	-	-	-	-	-	-	-	-	-	S	M	-	M
CO3	S	S	M	•		•	-	•	•	-	-	S	M	-	M
CO4	S	S	-	-	-	S	-	S		-	-	S	M	-	M
CO5	S	S	-	-	S	-	-	-	-	-	-	S	M	-	M

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION OF MEMS AND MICROSYSTEMS

Unique characteristics of MEMS, Microsystems Technology- An Overview, typical MEMS and Microsystem Products. Scaling laws in miniaturization- Application of MEMS and Microsystems- Future Directions of MEMS.

MATERIALS AND FABRICATION PROCESSES

Structure of silicon and other materials, - Mechanical properties of Si, Silicon Compounds silicon piezo resistors, Galium arsenide, quartz, polymers for MEMS. Silicon wafer processing - Bulk micromachining and Surface micromachining, Wafer-bonding. Thin-film deposition, Lithography, wet etching and dry etching. LIGA and other moulding techniques- Soft lithography and polymer processing- Thick-film processing; Low temperature co-fired ceramic processing- Smart material processing.

MICRO SENSORS AND MICRO-ACTUATORS

10

Micro sensors - Basic principles and working of micro sensors- Acoustic wave micro sensors. Biomedical micro sensors- Bio-sensors- Chemical micro sensors - Optical Sensors - Pressure micro sensors- Thermal micro sensors-acceleration micro sensors; Micro actuators - Basic principles and working of micro actuators- Electrostatic micro actuators- Piezoelectric micro actuators- Thermal micro actuators- SMA micro actuators- Electromagnetic micro actuators, micro valves, micro pumps.

SCIENCE OF NANO MATERIALS

Q

Classification of nano structures – effect of the nanometer length scale effects of nano scale dimensions on various properties – structural, thermal, chemical, mechanical, magnetic, optical and electronic properties – effect of nanoscale dimensions on biological systems. Fabrication methods – Nanoparticles, Sol-Gel Synthesis, Inert Gas Condensation, High energy Ball Milling, Plasma Synthesis, Electro deposition and other techniques. Synthesis of Carbon nano tubes – Solid carbon source based production techniques – Gaseous carbon source based production techniques. Top down processes – bottom up process.

CHARACTERIZATION OF NANO MATERIALS

9

Nano-processing systems – Nano measuring systems – characterization – analytical imaging techniques – microscopy techniques, electron microscopy scanning electron microscopy, transmission electron microscopy, scanning tunneling microscopy, atomic force microscopy, diffraction techniques – spectroscopy techniques – Raman spectroscopy, 3D surface analysis – Mechanical, Magnetic and thermal properties – Nano positioning systems.

Reference Books

- 1. Tai Ran Hsu, MEMS and Microsystems Design and Manufacture, Tata-McGraw Hill, New Delhi, 2002.
- 2. Mark Madou Fundamentals of Microfabrication, CRC Press, New York, 1997.
- 3. Charles P Poole, Frank J Owens, Introduction to Nano technology, John Wiley and Sons, 2003
- 4. Julian W. Hardner Micro Sensors, Principles and Applications, CRC Press 1993.
- 5. Guozhong Cao, "Nanostructures and Nanomaterials: Synthesis, Properties, and Applications", World Scientific Publishing Private, Ltd., 2011.
- 6. Zhong Lin Wang, "Characterization of Nanophase Materials", Wiley-VCH, 2004.
- 7. Carl. C Koch, "Nanostructured Materials: Processing, Properties and Potential Applications", William Andrew Publishing Norwich, 2006.
- 8. Yang Leng, Materials Characterization: Introduction to Microscopic and Spectroscopic Methods, John Wiley & Sons, 2013.

Alterna	ative NPTEL/SWAYAM	Course				
S.No	NPTEL /SWAYAM C	ourse Name	Instructor	Host Iı	nstitution	Duration
Course	Designers					
S.No	Faculty Name	Designation	Department/Name of the College		Email id	
1	S. Arunkumar	Assistant Professor	MECH/VMKVEC		arunkumar@vmkvec.ed	
					<u>u.1n</u>	

		NO	N-DE	STRU	JCTI	VE TES	TING	Cate	gory	L	T	P	•	Cre	edit
			AN	ID EV	ALU	ATION		E	C	3	0	0)	3	
Pream Γο stress		oortan	ce of	NDT i	n engi	neering.	•								
Prereq	uisite	: NIL													
Course	e Obje	ctive													
1 T	o impa	rt kno	wled	ge on	Visua	al Inspe	ction &	& Liqu	id Pe	netrant	Testin	ng			
2 T	Γο understand the behavior of eddy current testing & acoustic emission														
3 T	o unde	rstanc	the s	electi	on of	Magnet	ic Parti	cle Tes	sting &	& Therr	nograpl	hy			
4 D	Develop the thorough knowledge of Ultrasonic Testing & Radiography														
5 T	o unde	rstanc	the c	ase st	udies,	compari	ison an	d selec	tion o	f NDT	method	S			
Course	Outco	omes:	On t	he su	ccessi	ful com	pletio	n of th	ie coi	ırse, st	udent	s will b	e able	to	
CO1.	Under Testin		the c	oncep	ts of	elastic,	Visual	Inspec	tion &	z Liquio	l Peneti	rant		Under	stand
CO2.	Analy	se the	beha	vior o	of edd	y curren	t testin	g & acc	oustic	emissio	on			Anal	yse
CO3.	Select			e appl	icatio	ons in M	Iagneti	e Partic	cle Te	sting &				App	oly
CO4.			-	Iltraso	nic Te	sting &	Radiog	graphy.						Under	stand
CO5.	Select	case	studie	s, com	pariso	n and se	election	of ND	T me	thods.				App	oly
Mappi	ng wit	h Pro	gram	me O	utcor	nes and	d Prog	ramm	e Sp	ecific (Outcon	nes			
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	-	-	-	-	-	-	-	-	-	M	M	-	-
CO2	S	M	-	-		-		-		-	-	S	M	-	M
CO3	S	S	M	-	-	-	•	-	•	-	-	S	M	-	M
CO4	S	S	-	-	-	S	-	S	-	-	-	S	M	-	M
CO5 S- Stron	S or M-M	S	. [[.	-	S	-	•	-	-	•	-	S	M	_	M
SYLL		eululli	, L-L0	· · ·											
NON-DI	ESTRU			ESTI	NG:	AN IN	TROI	OUCTI	ON,	VISU	AL IN	SPEC	TION	& L	_
PENETI							s, Com								6

Introduction to various non-destructive methods, Comparison of Destructive and Non destructive Tests, Visual Inspection, Optical aids used for visual inspection, Applications. Physical principles, procedure for penetrant testing, Penetrant testing, Penetrant testing materials, Penetrant testing methods-water washable, Post — Emulsification methods, Applications

EDDY CURRENT TESTING & ACOUSTIC EMISSION

9

Principles, Instrumentation for ECT, Absolute, differential probes, Techniques – High sensitivity techniques, Multi frequency, Phased array ECT, Applications.Principle of AET, Instrumentation, Applications - testing of metal pressure vessels, Fatigue crack detection in aerospace structures

MAGNETIC PARTICLE TESTING & THERMOGRAPHY

Principle of MPT, procedure used for testing a component, Equipment used for MPT, Magnetizing techniques, Applications.Principle of Thermography, Infrared Radiometry, Active thermography measurements, Applications – Imaging entrapped water under an epoxy coating, Detection of carbon fiber contaminants.

ULTRASONIC TESTING & RADIOGRAPHY

10

Principle, Ultrasonic transducers, Ultrasonic Flaw detection Equipment, Modes of display A- scan, B-Scan, C-Scan, Applications, Inspection Methods - Normal Incident Pulse-Echo Inspection, Normal Incident Throughtransmission Testing, Angle Beam Pulse-Echo testing, Applications of Normal Beam Inspection in detecting fatigue cracks, Inclusions, Slag, Porosity and Intergranular cracks. Principle of Radiography, Effect of radiation on Film, Radiographic imaging, Inspection Techniques — Single wall single image, Double wall Penetration, Multiwall Penetration technique, Real Time Radiography

CASE STUDIES, COMPARISON AND SELECTION OF NDT METHODS

9

Case studies on defects in cast, rolled, extruded, welded and heat treated components. Comparison and selection of various NDT techniques. Codes, standards, specification and procedures.

Reference Books

- 1. Baldev Raj, Jeyakumar, T., Thavasimuthu, M., "Practical Non Destructive Testing" Narosa publishing house, New Delhi, 2002
- Krautkramer. J., "Ultra Sonic Testing of Materials", 1st Edition, Springer Verlag Publication, New York, 1996.
- Peter J. Shull "Non Destructive Evaluation: Theory, Techniques and Application" Marcel Dekker, Inc., New York, 2002

Alternative NPTEL/SWAYAM Course

		ı	1	
S.No	NPTEL /SWAYAM Course Name	Instructor	Host Institution	Duration

S.No	Faculty Name	Designation	Department/Name of the College	Email id
1	M SENTHIL KUMAR	ASSISTANT PROFESSOR	MECH/VMKVEC	senthil@vmkvec.edu.in

ROBOT DESIGN & PROGRAMMING	Category	L	Т	P	Credit
ROGRAMM	EC	3	0	0	3

Preamble

This course provides and creates a base for the students to develop concepts of Robotics

Prerequisite: NIL

Course Objective

- 1 To understand importance and anatomy of the robot.
- 2 To provide an in-depth study of robot kinematics and dynamics.
- 3 To develop skills for robot programming.
- 4 To develop criticizing skills for robot programming and AI.
- 5 To analysis sensors and actuators in robotic applications.

Course Outcomes: On the successful completion of the course, students will be able to

CO1.	To get knowledge of the mechanical structures of robots and grippers also will	Remember
	learn about basic terminology of the robots.	
CO2.	To understand the kinematic and dynamic characteristics of the robot.	Understand
CO3.	Able to programming the robots using different techniques	Apply
CO4.	To apply the programming with the robots.	Analysis
CO5.	To analysis the different actuators and sensors for the robotic applications	Analysis

Mapping with Programme Outcomes and Programme Specific Outcomes

co	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	M	L	L	-	-	-	-	-	-	-	S	-	-
CO2	S	S	S	M	M	-	-	-	-	-	-		S	-	-
CO3	S	S	S	M	M	•	-	•	•	-	-	•	S	•	-
CO4	S	S	S	M	M	-	-	-	-	-	-		S	-	-
CO5	S	S	S	M	M	-	-	-	-	-	-	-	S	-	-

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION

History of robots, Classification of robots, Present status and future trends. Basic components of robotic system. Basic terminology- Accuracy, Repeatability, Resolution, Degree of freedom. Mechanisms and transmission, End effectors, Grippers-different methods of gripping, Mechanical grippers-Slider crank mechanism, Screw type, Cam type gripper, Magnetic grippers, Vacuum grippers, Air operated grippers; Specifications of robot.

KINEMATICS AND DYNAMICS OF ROBOTS

2D, 3D Transformation, Scaling, Rotation, Translation, and Homogeneous coordinates, multiple transformations, Simple problems. Matrix representation, Forward and Reverse Kinematics Of Three Degree of Freedom, Homogeneous Transformations, Inverse kinematics of Robot, Robot Arm dynamics, D-H representation of robots, Basics of Trajectory Planning.

ROBOT PROGRAMMING

Robot programming-Introduction-Types- Flex Pendant- Lead through programming, Coordinate systems of Robot, Robot controller- major components, functions-Wrist Mechanism-Interpolation-Interlock commands operating mode of robot, Jogging-Types, Robot specifications- Motion commands, end effectors and sensors commands.

VAL LANGUAGE

Robot Languages-Classifications, Structures- VAL language commands motion control, hand control, program control, pick and place applications, palletizing applications using VAL, Robot welding application using VAL program-WAIT, SIGNAL and DELAY command for communications using simple applications. VAL-II programming-basic commands, applications- Simple problem using conditional statements-Simple pick and place applications-Production rate calculations using robot.

ROBOT SENSORS AND ACTUATORS

Design of Robots – characteristics of actuating systems, comparison, microprocessors control of electric motors, magnetostrictive actuators, shape memory type metals, sensors, position, velocity, force, temperature, pressure sensors – Contact and non contact sensors, infrared sensors, RCC, vision sensors.

Text Books

- 1. Groover, M.P., Weiss, M., Nagel, R.N., Odrey, N.G. and Dutta, A., 2012. Industrial robotics: technology, programming, and applications. McGraw-Hill.
- 2. Fu, K.S., Gonzalez, R. and Lee, C.G., 1987. Robotics: Control Sensing. Vis. Tata McGraw-Hill Education.

Reference Books

- 1. Siciliano, B., Khatib, O. and Kröger, T. eds., 2008. *Springer handbook of robotics* (Vol. 200). Berlin: springer.
- 2. Gordon Mair, 'Industrial Robotics', Prentice Hall (U.K.) 1988
- 3. Niku, S.B., 2001. *Introduction to robotics: analysis, systems, applications* (Vol. 7). New Jersey: Prentice hall.
- 4. Klafter, R.D., Thomas, A.C. and Negin, M., 1989. Robotic Engineering: An Integarted Aproach
- 5. Mckerrow, P., 1991. Introduction to robotics. Addison-Wesley Longman Publishing Co., Inc..

Alternative NPTEL/SWAYAM Course

S.No	NPTEL /SWAYAM C	Course Name	Instructor	Host 1	Institution	Duration
	Nil					
Course	Designers					
			TD	J		

S.No	Faculty Name	Designation	Department/Name of the College	Email id
1	Dr. S. Natarajan	Associate Professor	Mechanical Engineering /	natarajans@vmkvec.edu.i
			VMKVEC	n
2				

ELECTIVE COURSES FOR SEMESTER - 3

		/ //ANU		TIVE		(Catego	ry	L		T		P	Cr	edit
	I	IANU	FAC	IUKI	NG		EC		3		0		0	í	3
Prereq	uisite:-l	Nil													
Course	Objecti	ive													
1		erstand nviron	_	-					_	-				tation	s and
2	Deve	lop a c	compr	ehens	ive ur	derst	andin	g of fu	ından	nental	addit	ive m	anufa	cturin	ıg
3		ify sor		the im	porta	nt res	earch	challe	enges	assoc	ciated	with .	AM a	nd its	data
4	meth	t a des odolog	gies to	produ	ice su	ccess	ful 3E) prin	ts.						
5	Fabri	cate 3	D med	chanic	al obj	ects u	ising a	a varie	ety of	3D p	rinting	g tech	nolog	gies	
Course	Outcor	nes:Oı	n thes	ucces	sfulco	omple	etiono	f the	cours	e,stud	lentsv	villbe	ablet	0	
CO1.	Unders liquid deposi	and so	lid ba	sed ad	ditive	man	ufactu	iring s					_	nderst	and
CO2.	Unders powder laser si	r based	l addit										_	nderst	and
CO3.	Descri manuf				and tl	ne app	olicati	on of	a rang	ge of	additi	ve	Apj	ply	
CO4.	Selecti a 3d pr			zation	of co	rrect (CAD 1	forma	ts in t	he ma	anufac	cture (of App	ply	
CO5.	Descri technic								suital	ble ad	lditive	,	Ap	oply	
Mappi	ngwith	Progra	amme	Outc	omes	andP	rogra	mme	Speci	ficOı	ıtcom	es	•		
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
CO1	М	-	-	-	M	-	M	-	-	-	_	L	L	-	-
CO2	M	-	-	-	M	-	M	-	-	-	-	L	L	-	-
CO3	M	-	-	-	M	-	M	ı	-	-	-	L	L	-	-
CO4	M	-	-	-	M	-	M	-	-	-	-	L	L	-	-
CO5	M	_	_	-	M	-	M	-	-	_	_	L	L	_	_
S-Strong	g;M-Med	ium;L-	Low												

Syllabus		
Module 1	Introduction	9
Developme processes-	evelopment of AM systems – AM process chain - Impact of AM ent - Virtual Prototyping- Rapid Tooling – RP to AM -Classificati Benefits- Applications	
Module 2	Reverse Engineering and CAD modelling	9
Prototyping Wire frame	cept- Digitization techniques – Model reconstruction – Data Processing g: CAD model preparation, Data requirements – Geometric modelling e, surface and solid modelling – data formats - Data interfacing, Part orienteration, Support structure design, Model Slicing, Tool path generation-Studies.	techniques: entation and
Module 3	Liquid based and solid based Additive Manufacturing systems	9
processes, materials, a Solid Grou Fused dep products,	graphy Apparatus (SLA): Principle, pre-build process, part-building and photo polymerization of SL resins, part quality and process planning, record advantages, limitations and applications. and Curing (SGC): working principle, process, strengths, weaknesses and a osition Modelling (FDM): Principle, details of processes, process variate materials and applications. Laminated Object Manufacturing (LOM) details of processes, products, materials, advantages, limitations and appears	pplications. bles, types, Working
Module 4	Powder based Additive Manufacturing systems	9
structures, Engineered	Laser Sintering (SLS): Principle, process, Indirect and direct SL materials, post processing, surface deviation and accuracy, Applicated Net Shaping (LENS): Processes, materials, products, advantages, limits—Case Studies.	ions. Laser
Module 5	Other Additive Manufacturing systems	9
process car systems, st Manufactu	ensional Printing (3DP): Principle, basic process, Physics of 3DP, types of pabilities, material system. Solid based, Liquid based and powder based arength and weakness, Applications and case studies. Shape Deposition aring (SDM), Ballastic Particle Manufacturing (BPM), Selective Laser Meam Melting.	3DP
TextBook	s	
box	ou, L.W. and Liou, F.W., "Rapid Prototyping and Engineering application for prototype development", CRC Press, 2011	ns : A tool
2 Hil	ton, P.D. and Jacobs, P.F., Rapid Tooling: Technologies and Industrial plications, CRC press	
Reference	Books	
	ua, C.K., Leong K.F. and Lim C.S., "Rapid prototyping: Principles and blications", second edition, World Scientific Publishers,	

2	Gebhardt, A., "Rap	oid prototyping",	Hanser Gardener I	Publications, 2003
3	Gibson, I., Rosen, Rapid Prototyping			anufacturing Methodologies: pringer, 2010
4	Kamrani, A.K. and	Nasr, E.A., "Rap	id Prototyping: Theo	ory and practice", Springer, 2006.
Cours	seDesigners			
Cours S.No	FacultyName	Designation	Department/ College	Emailid
		Designation Associate Professor	-	Emailid sangeethas@avit.ac.in

Category L P \mathbf{C} **COMPOSITE MATERIALS** EC 3 0 PREAMBLE This course reviews the various composite materials their processing techniques and their behaviors, and to develop models and their applications in aerospace, automotive and medical fields **PREREQUISITE - NIL COURSE OBJECTIVES** To study about Fibre reinforced Plastics To study the manufacturing processes of the composite materials To study about macro mechanical behavior of FRP To study about micromechanical behavior of composite materials To study about material models of composites **COURSE OUTCOMES** On the successful completion of the course, students will be able to Know the types of reinforcements and fibers used in composite materials Understand **CO2.** Know the various manufacturing techniques in composite manufacturing Understand CO3. Able to test the macro mechanical behavior of Fiber Reinforced Plastics Analyze **CO4**. Able to test the Micro mechanical behavior of Fiber reinforced plastics Analyze CO5. Make models for solving the composite material manufacturing Apply PO PO PO PO PO PO PO PO1 PO1 PO1 **PSO PSO PSO** COS PO4 PO5 7 8 9 0 3 2 3 6 1 1 2 1 L CO1 S L \mathbf{S} M L \mathbf{L} L \mathbf{S} CO₂ \mathbf{S} L CO3 S S S S L L \mathbf{S} L CO4 S L \mathbf{S} S S S \mathbf{L}

S- Strong M-Medium L- Low

S

Syllabus

CO₅

S

FIBRE REINFORCED PLASTICS (FRP)

S

S

S

L

Definition; Types; General properties and characteristics; Reinforcing materials – particles, fibers,

L

whiskers; Properties of reinforcing materials; Matrix materials; Additives; Properties of FRP materials; Applications

MANUFACTURING PROCESSES

Open mold processes – Hand layup, Spray up, Vacuum bag, Pressure bag & autoclave, Centrifugal casting, Filament winding; Closed mold processes – Compression molding, Resin transfer molding (RTM), Injection molding, Pultrusion; SMC & DMC products, etc.

MACROMECHANICAL BEHAVIOR OF FIBRE REINFORCED PLASTICS

Design variables; Selection of fiber-matrix and manufacturing process; Effects of mechanical, thermal, electrical and environmental properties, Fiber orientation, Symmetric and asymmetric structure; Effects of unidirectional continuous and short fibers; Lamination theory; Failure theories.

MICROMECHANICAL BEHAVIOR OF FIBRE REINFORCED PLASTICS

Strengthening methods, Elasticity of fibre composites, Plasticity and fracture of composites, Crack propagation in fibre composites, Failure under compressive loads.

MATERIAL MODELS

Law of Mixtures, Shear lag model, Laminated plate model, Eshelby's models, Other models.

Text Books:

- 1. Haslehurst.S.E., "Manufacturing Technology ", ELBS, London.
- 2. Krishnan K. Chawle. "Composite Material: Science and Engineering" Second Edition, Springer.

Reference:

- 1.. T.W.Clyne, P.J. Withers, "An Introduction to metal matrix composites", Cambridge University Press.
- 2. F.C. Campbell "Structural Composite Materials", Materials Park, ASM International, 2010

S. No.	Name of the Faculty	Designation	Department / Name of the College	Mail ID
1	Dr.D.Bubesh Kumar	Associate Professor	Mechanical/ AVIT	bubeshkumarmech@gmail.com

		COM PRO					Catego	ory	L		T		P	Cro	edit
					310 11		EC		3		0		0	3	3
Prereq	uisite:N	il													
Course	Objecti	ve													
1	To Kı	now al	bout (compi	uter ai	ded n	nodell	ing&	Softv	vare					
2	To Uı	ndersta	and va	arious	Com	puter	graph	ics an	d mo	del.					
3	To Kı	now al	bout (compi	uter P	roduc	t Desi	gn an	d Ma	nagen	nent				
4	To un	dersta	nd D	esign	tools	and to	echnic	ques							
5	Under	rstand	the co	oncep	t of p	roduct	t deve	lopmo	ent &	Desig	gn Teo	chniq	ue.		
	0.4		41		6.1			6.41			. ,	•111			
Course	Outcom														
CO1.	Describ	e the	new E	Engine	eering	Desig	gn and	l Vari	ous P	hases	invol	ved.	Ur	nderst	and
CO2.	Learn v generat					surfac	e mod	leling	techn	iques	used	for	Ur	nderst	and
CO3.	Have k	nowle	dge al	bout p	roduc	et Des	ign ar	nd des	ign M	Ianag	emen	t.	Ap	pply	
CO4.	Have k	nowle	dge al	bout v	ariou	s Pro	duct r	nodel	s and	differ	ent m	etric	Ap	pply	
CO5.	Unders			-	•			r impa	act on	prov	ided		Ap	pply	
Mappi	ngwith I	Progra	amme	Outc	omes	andP	rogra	mme	Speci	ficOu	ıtcom	es			
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
CO1	S	S	S	L	-	1	-	M	L	L	-	-	S	-	-
CO2	S	S	S	M	-	-	-	M	L	L			L	-	-
CO3	S	S	L	L	-	-	-	M	L	L			S	_	-
CO4	L	S	S	M	-	1	-	M	L	L			L	-	-
CO5	S	L	L	M	-	1	-	M	L	L			S	-	-
S-Strong	g;M-Medi	um;L-	Low								•	•		•	•

Syllab	us	
Modu	le 1 INTRODUCTION	9
engine for des	action to Engineering Design – Various phases of systematic design – ering and concurrent engineering – Computer hardware & Peripherals – softwarign anddrafting. Concept of CAD as drafting and designing facility, desirable backage, drawing	are packages
Modu	le 2	9
transfo	ater graphics – applications – principals of interactive computer graphics – 2D remations – projections – curves - Geometric Modeling – types, Graphics olymodeling – use of software packages	
Modu	le 3 PRODUCT DESIGN CONCEPTS AND DATA MANAGEMENT	9
structu genera	standing customer needs – Product function modeling – Function trees a res– Product tear down methods – Bench marking – Product port foliotion and selection – Product Data Management – concepts – Collaborat – manufacturing planning factor – Customization factor – Product life cycle Management – Product life cycle Man	o – concept tive product
Modu	PRODUCT DESIGN TOOLS & TECHNIQUES	9
Altshu	et modeling – types of product models; product development process tools – The liter's inventive principles – Modeling of product metrics – Design for reliability nufacturability – machining, casting, and metal forming – design for assembly embly.	ity – design
Modu	le 5 PRODUCT ARCHITECTURE AND DESIGN TECHNIQUES	9
geome	et development management - establishing the architecture - creation - tric layout development - Fundamental and incidental interactions. Taguch Quality loss functions – Design for product life cycle.	_
TextB		
1	Biren Prasad, "Concurrent Engineering Fundamentals Vol.11", Prentice Ha	ıll, 1997.
2	Ibrahim Zeid, "CAD/CAM theory and Practice", Tata McGraw Hill, 1991.	
Refere	enceBooks	
1	David F.Rogers.J, Alan Adams, "Mathematical Elements for Computer Gram McGraw Hill,1990.	aphics",
2	James G.Bralla, "Handbook of Product Design for Manufacturing", McGra	w Hill,
3	Mikell P Groover, "Automation, Production Systems, and Computer-Integr Manufacturing", 4th Edition, Pearson	ated

4	M. Groover and E Edition, Pearson E	·	CAM Computer-Aid	led Design and Manufacturing", 1st					
Cours	eDesigners								
S.No	Denartment/								
1	G ANTONY CASMIR	Assistant Professor	Mech/AVIT	antonycasmir@avit.ac.in					

			TZ'N	TEDC	INC N	A TT	ERIAL	C	Ca	tegory	L	T	P	Cı	redit
			E.W.	IEKG	ING I	VIAIE	LKIAL	4 3		EC	3	0	0		3
variou	im of t		materi				unders cations		he pro	perties,	proces	sing, ma	nufactu	ring of	
Cour	se Ob	jective	<u> </u>												
1	To un	dersta	nd the	classi	ficatio	n of E	nginee	ering N	Materia	als and	their re	levant ap	plication	ons.	
2	To un	dersta	nd the	powd	er met	allurg	y conc	epts, p	proces	s techn	iques, a	pplicatio	ns.		
3	To un	dersta	nd the	basics	s in co	mposi	tes, fal	oricati	on me	thods, t	ypes ar	nd applica	ations.		
4	To un	dersta	nd the	vario	us forn	ns of S	Smart I	Materi	als, ap	plication	ons.				
5	To un	dersta	nd the	vario	ıs type	es of N	lano-m	nateria	l's, pr	oductio	on & ap	plications	s.		
Cour	se Ou	tcome	s: On	the su	ccessf	ul con	npletio	on of t	the co	urse, st	udents	will be a	able to		
CO1.	То	unders	tand c	lassifi	cation	of Ma	terials	and i	ts appl	ication	S.				
CO2.	Kno	ow the	conce	epts of	powd	er Met	allurgy	y and	its tecl	nniques	·				
CO3.	To	know	the dif	ferent	types	of con	nposite	es.							
CO4.	То	unders	tand t	he con	cepts	of Sma	art Mat	terials							
CO5.	То	obtain	the kr	nowled	lge of	Nano l	Materi	als an	d its a	pplicati	ons				
Марр	oing w	ith Pr	ogran	nme C	utcon	nes an	d Prog	gramı	me Sp	ecific (Outcom	ies			
СО	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO12	PSO 1	PSO 2	PSO 3
CO1	S	L	L	L	M	M							L		
CO2	S	L	L	L	M	M							L		
CO3	S	L	M	M	M	L							L		
CO4	S	L	M	L	M	M							L		
CO5	S	L	S	M	M	M							L		

S- Strong; M-Medium; L-Low

SYLLABUS

ENGINEERING MATERIALS – CONVENTIONAL

Classification of

engineering materials- Metallic materials-ferrous materials-steel & cast iron and non ferrous materials – aluminium and copper. Non-Metallic materials – glasses , ceramics ,Polymer and plastics – their characteristics and unique properties- Material for structural applications - Light weight structural materials for automobiles and aero plane applications .

POWDER METALLURGY – POWDER SYNTHESIS

Powder Metallurgy – Near net shaping process methods and principles - chemical methods – electrochemical methods - atomization – mechanical alloying – rapid solidification – processing – Nano size powders. Powder physical and chemical characterization – process characteristics - Applications.

COMPOSITE MATERIALS

Composites – Types of composites - Naturally occurring, synthetic & engineered composites - MMC – CMC – PMC - Fibre and whisker reinforced composites (continuous and discontinuous) - particulate composites layered or sheet composites, composite coating or thin fibre, inter metallic composites - properties and characteristics of composites

SMART MATERIALS

Introduction to intelligent/smart materials, shape memory alloys-types, NiTiNol-origin, properties, martensitic transformation, Memorization process- applications-medical, satellite etc

NANO MATERIALS

Nanomaterials-Definition, Classification of Nanostructured materials, causes of interest in nanomaterials, applications of nanomaterials. Processes for producing ultrafine powders-mechanical grinding, wet chemical synthesis of nanomaterials. Gas phase synthesis of Nano materials, gas condensation processes, chemical vapour condensation, laser ablation

TEXT BOOKS

- 1. 11. Budinski, Kenneth G, Budinski, Michael K, Engineering Materials: Properties and Selection, 9th Edition, PHI.
- 2. M.V.Gandhi., Thomson Smart Materials and Structures- Chapman and Hall.
- 3. A.K.Bandhopadyay-Nanomaterials-New Age

Reference Books

- 1. 1. 1. Srinivasan.K, Composite Materials, Narosa Publishing House.
- 2. Ramesh, Nanomaterials: Mechanics and Mechanisms, Springer Verlag, EPZ, Paperback edition.
- 3. Angelo P.C., Subramanian R., Powder Metallurgy, Science, Technology and Applications, Prentice Hall of India

S.No	Faculty Name	Designation	Department/ Name of the College	Email id
1	C.THIAGARAJAN	ASSISTANT PROFESSOR (GRADE-II)	Mechanical/AVIT	cthiagarajan@avit.acc.in

			MA	NUFA	CTUR	ING			Categ	ory	L	,	Т	P	Cr	edit
			MA	NAGE	EMENT				EC		3		0	0		3
Prere	quisit	e–NIL										•				
Cours	seObi	ective														
1			the plar	nt locati	on, mat	erial ha	andling	system	and c	constru	ct the	plant l	layout			
2	Tor	nake u	se of the	e work s	study and	d work	measure	ment								
3	Too	levelop	an abi	lity to f	orecast	the der	nand an	d to cre	ate wo	ork she	et					
4	То	identif	y the P	roject n	etwork	analysi	S									
5	Apj	oly the	princip	oles of r	narketir	ng man	agemen	t								
Cours	seOut	comes	:Onthe	esucces	sfulcom	pletion	noftheco	ourse,s	tudent	ts willb	eable	to				
CO1.							Approp							Un	derstand	
CO2.	Illu	strate 1	method	study a	and valu	e analy	/sis							Un	derstand	
CO3.	Dei	nonstr	ate mar	ket rese	earch an	d sales	promot	ion tec	hnique	es				Un	derstand	
CO4.	Exa	mine	various	produc	tion pla	nning s	strategie	es s						Un	derstand	
CO5.	Apj	oly the	knowl	edge to	develop	Proce	ss plann	ing ,sc	hedulii	ng and	foreca	sting		Ap	ply	
CO6.	Apj	oly the	skills i	n devel	op proje	ect netv	work and	d const	ruct cri	itical p	ath			Ap	ply	
Monn	inawi	thDro	aromn	noΩute	omocon	dProg	rammes	Specific	-Oute	omos						
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSC)1	PSO2	PSO3
CO1	S	M	M	M	L	-	-	-	S	0 L	1 L	2	M		-	L
CO2	S	S	S	S	L	_	_	_	M	L	L	_	M			L
CO3	S	S	M	S					S	M	M		M			
					L	-	-	-				_			-	L
CO4	S	S	M	S	L	-	-	-	M	L	L	-	M		-	L
CO5	S	S	S	S	L	-	-	-	M	L	M	-	M		-	L
CO6	S	S	S	S	L	-	-	-	M	L	L	-	M		-	L
S-Stro	ng:N	I-Med	ium;L-	·Low												
				20												
Syllab	ous															
MOD	ULE	1 P	LANT	ENGI	NEERI	NG A	ND FA	CILIT	Y PLA	NNIN	G			9		
															Compari	
avoute	-Ma	teriale	handlir	na Dai		T74-	CC									
															n – Types cation, F	

						I
MODU	LE 2	WORK STUDY	7			4
	ırement –	•	•	steps in method study oduction studies – wor		•
MODU	LE 3	PROCESS PL	ANNING AND FOR	ECASTING		9
compon Regressi	ent – Breation and C	ak even analysis orrelation – Exp	– Forecasting – Purpo onential smoothing – I		thods of forecas	ting – Time series –
MODU	ULE 4	PRODUCTIO	ON PLANNING & CO	ONTROL		9
Aggreg	gate produ	ction planning,	production planning st	mapping and feedback trategies, Disaggregatir management, Operation	ng the aggregate	plan, Materials
MODU			NG AND PROJECT		r senedamig, pri	5
				ohnson's algorithm for ritical path –Floats – R		
MODU	ULE 6	PERSONNE	L AND MARKETIN	IG MANAGEMENT		9
Comm	unication ls – Adve	- conflicts - Ind	lustrial relations – Tra	anagement – Recruitme de Union – Functions o tion channels – Market	of marketing – S	ales promotion
1	1	ererselvam "Pro	oduction and Operation	ns Management", 3rd E	Edition PHI 201	12
2				Selwyn, Engineering M		
3	Martand	T. Telsang, Prod	luction Management, S	S.Chand& Co., 2005		
Refere	nceBooks					
1				Management, Vikas P		
2			on and Operations Ma	nagement", 2nd Edition	n, Oxford Highe	r
		on, 2007.	10 4 35	22 A.1 T 1'.'	CIE TMI 200	0
3	S. N. Cl	nary, "Production	n and Operations Man	agement", 4th Edition,	SIE, 1MH, 200	9.
Course	eDesigne	rs				
S.No	Faculty	Name	Designation	Department /Nameofthe College]	Emailid
1	A.IMTI	HIYAS	ASST.PROF	MECH/ AVIT	imthiy	as@avit.ac.in
2						

		MANU VSTI			ING ATIO	N	Catego	ry	L		T		P	Cre	edit
	8	1511	10101	WIUL	ATIO		EC		3		0		0		3
Prereq	uisite:S	imula	tion n	nodel	ing& a	analy	ysis	•		•		•		•	
Course	Objecti	ve													
1				of sir	nulatio	n mo	odelin	g and	repli	cating	the p	ractic	al situ	ation	s in
2		izatio rate ra		numl	ers an	d ran	ndom	variat	es usi	ng di	feren	t techr	nique	S.	
2	<u> </u>		_												
3	Desig	gn and	Deve	lop si	mulatio	on m	odel ı	ising l	heuris	tic m	ethod	S.			
4	Analy	ysis of	Simu	lation	mode	ls usi	ing in	put an	alyze	r, and	outp	ut ana	lyzer		
5	Expla	ain Ve	rificat	ion ar	nd Vali	datio	on of s	simula	ation 1	nodel	.•				
Course	Outcon	nes:Oı	n thes	ucces	sfulco	mple	etiono	of theo	cours	e,stud	lentsv	villbe	ablet	0	
CO1.	Explain manufa						of tec	chnolo	ogy				Ur	nderst	and
CO2.	Describ and mo				ortant (elem	ents o	f disc	rete e	vent s	simula	ition	Ar	nalyze	;
CO3.	Design													nalyze	;
CO4.	Genera	ite ran	dom n	umbe	rs and	varia	ants to	exec	ute a	simul	ation	model	Ar	nalyze	;
CO5.	Evalua manufa	-	_	etwo	rks and	l algo	orithm	ns in t	he cor	ntext (of		Ur	nderst	and
Mappi	ngwith]	Progra	amme	Outc	omesa	ndP	rogra	mme	Speci	ficOu	itcom	es			
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PS0
CO1	S	S	S	L	-	-	-	-	L	L	-	-	S	-	-
CO2	S	S	S	S	-	-	-	-	L	L			S	-	-
CO3		S	S	M	_	_	_	_	L	L			S	_	_
CO4	S	S	S	S	-	-	-	-	L	L			S	-	-
CO5	L	L	S	L	-	-	-	-	L	L			S	-	-
CO6	L	L	S	L	-	-	-	-	L	L			S	_	-
CO7	L	L	L	L	-	-	1	1	L	L			S	-	
C_Ctnone	;;M-Med	ium.T	I ow							<u> </u>	I	<u> </u>		<u> </u>	l

Syllabi	us					
Modul	e 1	INTRODUC	TION			9
				system – concept of s n modeling – types of n	simulation – simulation a modeling.	as
Modul	e 2	RANDOM N	UMBERS			9
	– dis		•		s – methods of generatin s – sampling – simple, r	_
Modul		DESIGN OF	SIMULATION I	EXPERIMENTS		9
starting co	onditi		perimental design con		– key variables – logic alysis, interpretation and	
Modul	e 4	ANALYSIS	OF SIMULATIO	N DATA		9
tests, Sel	lection	n of input models	without data, Multiva		parameter estimation, G nalysis. Verification and dels.	
Modul	e 5	QUEUING P	OLICIES, ALGO	ORITHMS AND	CASE STUDIES	9
algorithr	ns and				ons – Application of General odels with simple exam	
TextBo						_
1		ted Kingdom, 200		screte event system sir	nulation", 4th Edition, I	Pearson.,
2				ond edition, Prentice I	Hall, India, 2005	
Refere	nceF	Books				
1	Kale	chman M., "Pract	ical MATLAB" basics	s for engineers", CRC	press.,Taylor and Franc	is group, First
2	Schri	ber T.J., "Simula	tion using GPSS". Joh	ın Wiley, 2002. 2. Law	A.M. and Kelton W.D.	., "Simulation
3				t and Science", Prentic		,
_		vick P.A., "Imula Int"l Inc., India, 1	_	d Execution : Building	g Digital Worlds" New J	ersey: Prentice
	Inc.,	United States, 199		deling and Analysis"	.2nd Edition, New York	: McGraw Hill
Course	eDes:	igners		Donortmont/		
S.No		cultyName	Designation	Department/ College	Emailid	
1	M.	Saravanak	Asst Professor	Mech/AVIT	saravanakumar <u>@avi</u>	t.ac.in

2		
4		

		ATERI IARA(NG AN ON	D	Catego	ry	L		T		P	Cr	edit
		CHNI					EC		3		0		0		3
Prerequi	site:N	one													
CourseO	bjecti	ve													
1		•			cour n, crys					expect	ed to	be	knowl	edgea	ble i
2		omplet			ourse					ed to	be kn	owled	lgeable	e in el	ectroi
3		omplet nal An		the co	ourse t	he stu	ıdents	are e	xpecte	d to b	e kno	wledg	eable	in Ch	emica
4	On co		tion o		course ods	the	studen	ts are	expe	cted t	o be	knowl	edgea	ble in	statio
5	On co		ion of	the c	ourse	the st	udents	are e	expecto	ed to	be kn	owled	geable	in dy	namio
CourseO	utcom	es:Oı	1 thes	ucces	sfulco	mple	etiono	f the	cours	e,stud	lentsv	villbe	ablet	0	
CO1.	Interp	ret vai	rious r	nateria	ıls chaı	acteri	zation	techn	iques.				Uı	nderst	and
CO2.			_	_	and o	_							d Uı	nderst	and
CO3.	Under	rstand	the co	ncept	of Che	mical	and T	herma	ıl Ana	lysis			Aı	pply	
CO4.	Under	rstand	the pr	inciple	e of Me	echani	ical Te	esting -	– Stati	c Test	ts		Aı	pply	
CO5.	Unde	rstand	the pr	inciple	of Me	echani	ical Te	esting -	– Dyn	amic 7	Γests		Aı	nalyze	e
Mapping	gwith I	Progra	amme	Outc	omesa	andP	rogra	mme	Speci	ficOı	itcom	es			
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
CO1	S	S	S	L	-	-	-	M	L	L	-	-	S	-	-
CO2	S	S	S	L	-	-	-	M	L	L			S	-	-
CO3	S	S	S	M	-	-	-	M	L	L			S	-	-
CO4	S	S	S	M	-	-	-	M	L	L			S	-	-
CO5	S	S	S	M	-	-	-	M	L	L			S	-	-
S-Strong;	 И-Medi	um;L-	Low					<u> </u>	1	1	1	1	I	I	I

Syllabus	
Module 1 Micro and Crystal Structure Analysis	9
Principles of Optical Microscopy – Specimen Preparation Technique Polarization Techniques – Quantitative Metallography – Estimation of numbers – Microstructure of Engineering Materials - Elements of Crysta, Bragg's law – Techniques of X-ray Crystallography, Debye, Scherer ca – analysis of Diffraction patterns – Inter planer spacing – Identification of Electron Diffraction.	grain size – ASTM grain size lography – X- ray Diffraction mera – Geiger Diffractometer
Module 2 Electron Microscopy	9
Scanning Electron Microscopy (SEM) - Introduction, Instrument Operational variables, Specimen preparation, imaging modes, Application	
Module 3 Chemical and Thermal Analysis	9
Spectrometry, Auger Spectroscopy, Secondary Ion Mass Spectroscopy Spectroscopy (FTIR)- Proton Induced X-Ray Emission Spectroscopy, Thermo Gravity metric Analysis (TGA), Differential Scanning Calorimet Module 4 Mechanical Testing – Static Tests Codes and standards for testing metallic and composite materials. Rockwell and Micro Hardness Test , Tensile Test – Stress – Strain plot	Differential Thermal Analysis, by (DSC). 9 Hardness – Brinell, Vickers, - Proof Stress, Torsion Test -
Ductility Measurement – Impact Test – Charpy&Izod – DWTT - Fractur Module 5 Mechanical Testing – Dynamic Tests	e Toughness Test,
Fatigue – Low & High Cycle Fatigues, Rotating Beam & Plate Bending tests – Crack Growth studies – Creep Tests – LM parameters – AE Tests of Dynamic Tests. TextBooks Culity B.D., Stock S.R& Stock S., Elements of X ray Diffraction, 2001.	modal analysis - Applications
Dieter G.E., Mechanical Metallurgy, (3rd Edition), ISBN: 007016	8938, McGraw Hill, 1988.
ReferenceBooks	
ASM Hand book-Materials characterization, Vol – 10, 2004.	
2 Morita.S, Wiesendanger.R, and Meyer.E, —Non-contact Atomic 2002,	10 1
Grundy P.J. and Jones G.A., Electron Microscopy in the Study of Limited, 1976.	Materials, Edward Arnold
4 Newby J., Metals Hand Book- Metallography & Micro Struct International, 1989	ures, (9th Edition), ASM
Goldsten, I.J., Dale.E., Echin.N.P.& Joy D.C., Scanning Electron Analysis, (2nd Edition), ISBN – 0306441756, Plenum Publishing	1.0
CourseDesigners	
S.No FacultyName Designation Department/ College En	nailid
<u> </u>	kkumar@avit.ac.in

							Categoi	ry	L		Т		P	Cre	edit
	M	ECH	ATR(ONIC	S		EC		3		0		0	í	3
Duonos	iai4a.N	21													
	uisite:N														
Course	Objecti	ve													
1	To pr	ovide	overv	iew o	f need	l and l	benefi	ts of	mecha	atroni	cs in 1	manu	factur	ing	
	To kr	now th	e basi	c wor	king p	orincij	ple of	senso	rs and	d trans	sduce	rs of	use fo	r	
2	_	factur													
3		now the				orincij	ole of	drive	s and	actua	tors o	f use	for		
	To kr	now th	<u>nig sy</u> e feati	ures, 1	nodul	es and	d inter	rfaces	of m	icroco	ontrol	lers aı	nd		
4		proce													
5	То да	in the	know	ledge	of me	echatr	onic s	vsten	ns in c	design	proc	ess ar	nd cas	e stud	ies
	1 2 8		11110 11	10080	01 111		01110	, , , , , , ,	10 111 (- p100		10 000	- 500.0	
Course	Outcon	nes:Oi	n thes	ucces	sfulc	omple	etiono	f theo	course	e,stud	lentsv	villbe	ablet	0	
	Infer th	ne kno	wledg	e to st	tudy t	he me	chatro	onics	in ma	nufac	turing	7			
CO1.	system	S.											I I,	nderst	and
CO1.													UI	ideist	anu
CO2	Identif	•	select	the se	nsors	and t	ransdı	ucers	based	on th	ie			1	
CO2.	applica	tion.											Aj	oply	
CO3.	Idontif	u tha n	rinair	log or	d fun	ations	of dr	ivos s	nd oa	tuoto	ro.		۸.	anle:	
CO3.	Identif	y me p	ուուշդ	nes ai	ia run	cuons	s or ar	ives a	ma ac	tuato	rs.		A	oply	
	Disting	guish b	etwee	n mic	ropro	cesso	r and	micro	contr	ollers	and i	ts			
CO4.	functio												Aı	nalyse	;
CO5.	Catego	rize th	e vari	Ous st	ages (of des	ion in	meck	natron	ics sv	stems	2	Δ1	nalyse	
	Curego	1120 (1)	ic vari	045 50	uges	<u> </u>	1511 111	meer	iuu on	iles sy	Sterring	,	7 11	iary se	<u>'</u>
Mappi	ngwith [Progra	amme	Outc	omes	andP	rogra	mme	Speci				- Dao	l ngo	
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
901	6	M	M	т	C							C	C		
CO1	S	M	M	L	S	-	-	-	-	-	-	S	S	-	-
CO2	\mathbf{M}	M	M	L	M	_	_	_	M	_	_	_	S	_	_
CO3	B L	L	M	L	-	-	-	-	-	-	-	-	S	-	-
CO4	S	S	M	L	_	M	_	_	_	_	_	_	S	_	_
C04	, 5	5	141			171							5		<u> </u>
CO5	S	M	M	L	-	-	-	-	L	M	-	S	S	_	-
a c															
5-Stron	ıg;M-Me	dium;	L-Lov	V											

Syllab	us			
Modul	e 1 Introduction			7
Mechat of Mech	ronics-Scope and Sig	gnificance of Mecha areas of Mechatron	tronics approach to modern engineering and design- atronics systems- Elements of Mechatronics systems- ics-Classification of Manufacturing based onMechatr	-Subsystems
	e 2 Sensors and			11
effect so Temper and Gas	ensor – Resistive Tra rature sensors – Optic s Sensors-Signal proc le 3 Drives and A	nsducers – Inductive cal sensors – Piezo e cessing techniques. ctuators	entiometers – Strain gauges – LVDT – Eddy current se e Transducers-Capacitance Transducers – Digital trans- electric sensor-Ultrasonic sensors – Proximity sensors otary Actuators – Electrical actuators –Servo motors a	sducers – – Chemical
			Motors–Function of Drives-Solid state relays-Mechan oller through H-bridge Circuits	ical
Modul	e 4 Microprocess	sors and Microco	ntrollers	11
8051 M Instruct LED, A	licrocontrollers Archi	tecture, PIC Microc Format, Addressing 1	nparison of 8085 Microprocessor and 8051 Microcont controllers (16f xxx) series – Assembly language programodes, Basic programing-Interfacing-Sensors, Keyboodedded Systems RS 232 serial communication interface	ramming- ards, LCD,
Modul	e 5 Mechatronic	Systems		7
studies –	Pick and place robot nanagement system, l	is, Automatic car par Machinery automati K., Balasundaram M	systems – Traditional and Mechatronics design concerking system, Automatic camera, Automatic washing on. I S, Ramachandran K P, Mechatronics: Integrated Me	machine,
2		-	nics, Chand &Co, 2007	
Refere	enceBooks			
1		natronics: Electronic Education Limited,	e control systems in mechanical and electrical enginee, 2015.	ring,
2	Devadasshetty, Ric	hard A. Kolk, Mech	natronics System Design, Cengage Learning, 2011.	
3	BenoBenhabib, Ma	nufacturing, design,	, production, automation and integration, Marcel Dekk	xer, 2003
4	1	azidi J G, 8051 Mic	erocontroller and Embedded Systems, 2002.	
Course	eDesigners			1
S.No	FacultyName	Designation	Department/ College	Emailid
1	B.SELVA BABU	Assistant Professor	Mech/AVIT	selvababu @avit.ac.ir

_		
· ,		
4		

				TRUC				Ca	tegor	y :	L	T	P	Cro	edit
				IALS CATIO		ITS			EC		3	0	0	3	3
Pream To deve	ble elop the	knowle	edge (of stud	ents i	n nanc	-struc	tured 1	nateria	ıls.		,		·	
Prereq NIL	uisite														
Course	Object	ive													
	he object ano-mat		this	course	is to	make	the stu	dents	familia	ır with	the diff	ferent me	thods o	f synthe	sis fo
2 T	o motiv	ate the	stude	ents to	under	stand	the ev	olution	of na	no-mat	erials i	n the scie	entific e	ra.	
3 T	o under	stand d	iffere	ent pro	cessin	g met	hods a	nd pro	perties	s of nai	no-mate	erials.			
4 T	o explo	re knov	vledg	e abou	t the	differe	nt nan	oporu	s mate	rials.					
5 T	o provid	de the v	ariou	ıs appl	icatio	ns of r	ano-n	nateria	ls for f	uture e	enginee	ring appl	ications	3	
Course	Outcor	nes: O	n the	succe	ssful	compl	etion	of the	course	e, stud	ents wi	ill be abl	e to		
CO1.		stand that				mater	ials, ty	pes, v	arious	structu	ires of i	nano	Under	rstand	
CO2.		stand the				sis pro	ocess o	of nanc	-mate	rials, m	nethods	and	Under	rstand	
CO3.		stand the					roach	metho	ds and	techni	ques in	volved	Under	stand	
CO4.	Applio	cations	and t	ypes o	f vari	ous na	no po	rus ma	terials.				Apply	,	
CO5.	Analy	ze the v	vario	us nano	o-mate	erials	and its	princi	ple an	d desig	ŗn.		Analy	ze	
Mappii	ng with	Progra	amm	e Outc	omes	and I	Progra	amme	Specif	ic Out	comes				
CO	PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO12	PSO 1	PSO 2	PSO 3
CO1	M	2		7	L	S	,	0	,	0	1		1	2	3
CO2	S				M	M									
CO3	S				M	M									
CO4	S				M	M							L		
CO5	S		M		L	M							M		M
S- Stro	ng; M-N	Mediur	n; L-	Low		<u> </u>	<u> </u>	<u> </u>			<u> </u>		<u> </u>	<u> </u>	
Syllabu	ıs														
Jimbi															

0D, 1D, 2D structures –Size Effects –Fraction of Surface Atoms –specific Surface Energy and Surface Stress –Effect on the Lattice Parameter –Phonon Density of States–the General Methods available for the Synthesis of Nanostrutures –precipitative –reactive –hydrothermal/solvothermal methods –suitability of such methods for scaling –potential Uses.

BULK SYNTHESIS AND CHEMICAL APPROACHES

Top down and bottom up approaches—Mechanical alloying and mechanical ball milling- Mechano chemical process, Inert gas condensation technique — Arc plasma and laser ablation, Sol gel processing-Solvo thermal, hydrothermal, precipitation, Spray pyrolysis, Electro spraying and spin coating routes, Self-assembly, self-assembled monolayers (SAMs). Langmuir-Blodgett (LB) films, micro emulsion polymerization- templated synthesis, pulsed electrochemical deposition.

PHYSICAL APPROACHES

Vapor deposition and different types of epitaxial growth techniques (CVD,MOCVD, MBE,ALD)- pulsed laser deposition, Magnetron sputtering - lithography :Photo/UV/EB/FIB techniques, Dip pen nanolithography, Etching process :Dry and Wet etching, micro contact printing.

NANOPOROUS MATERIALS

Zeolites, mesoporous materials, nanomembranes - Carbon nanotubes and graphene - Core shell and hybrid nanocomposites.

APPLICATION OF NANOMATERIALS

Overview of nanomaterials properties and their applications, Molecular Electronics and Nanoelectronics – Nanobots- Biological Applications – Quantum Devices – Nanomechanics - Photonics- Nano structures as single electron transistor –principle and design.

Text	Books											
1	Guozhong Cao ,"Nanostructures and Nanomaterials , synthesis , properties and applications" ,Imperial College Press ,2004.											
2	Carl C. Koch (ed.), "Nanostructured Materials", Processing, Properties and Potential Applications, Noyes Publications, Norwich, New York, U.S.A.											
3	Bhusan, Bharat (Ed), "Springer Handbook of Nanotechnology", 2nd Edition, 2007.											
Refe	rence Books											
1	Modern Physics – Beiser 6th edition 2009.											
2	Quantum Mechanics - Bransden and Joachen 2nd edition 2000.											
3	Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Particles, 2nd Edition by Eisberg, Robert; Resnick, Robert, 1985.											
4	Quantum Physics – Theory and application, Ajoy Ghatak, Springer 2004.											
5	Principles of Quantum Mechanics 2nd ed R. Shankar 2000.											
6	6 Quantum Mechanics - Vol 1&2 - Cohen-Tannoudji,1997.											
Cou	rse Designer											
	Designatio Department/Name of											

S.No	Faculty Name	Designatio n	Department/Name of the College	Email id				
1.	A.SENTHILKUMA R	AP-II	MECH/AVIT	senthilkumar@avit.ac.in				

		PL	PRO ANN	CESS ING A		0	Catego	ry	L		T		P	Cro	edit
					TION	1	EC		3		0		0	3	3
Prereq	uisite:N	il													
Course	Objecti	ve													
1	To inte						ncepts	to ma	ke est	imatic	n for v	variou	s prod	ucts,	
2	To im						ob ord	er and	techn	iques	involv	ed in	shop f	loor	
3	To introcest	roduce	the co	ost esti	matio	n conc	ept to	analys	sis the	exper	ise and	d deter	minat	ion of	other
4	To im		owled	lge on	cost es	stimat	ion of	a proc	luct by	cons	iderin	g vario	ous ma	nufact	uring
5	To fac		estima	ition o	f time	for ma	achini	ng, we	lding,	forgi	ng and	allied	proce	esses	
Course	Outcom	es:Oı	1 thes	ucces	sfulco	mple	etiono	f theo	cours	e,stud	lentsv	villbe	ablet	0	
CO1.	Select the prepare	•					for v	arious	indus	trial p	roduct	s,	Un	idersta	nd
CO2.	Comput	e the j	ob ord	er cos	t for di	fferen	t type	of sho	p floc	or			Ap	ply	
CO3.	Identify deprecia				conce	ept – C	Overhe	ad Co	st, Ex	pense	&		Ap	pply	
CO4.		Calculate the time taken for various machining operations, apply appropriate methods for calculating depreciation Analyze													
CO5.	Identify welding							total	cost o	f the p	roduc	t -	An	alyze	
Mappi	ngwith I	Progra	amme	Outc	omes	andP	rogra	mme	Speci	ficOu	ıtcom	es			
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
CO1	S	M	L	-	-	-	-	-	-	-	L	L	S	-	L
CO2	S	M	L	-	-	L	-	-	-	-	L	L	S	-	L
CO3	S	M	M	L	-	L	1	1	-	-	M	M	S	-	L
CO4	S	M	M	M	-	L	-	-	-	-	S	M	S	-	L
CO5	S	M	M	M	-	L	-	-	-	-	S	M	S	-	L
S-Strong	g;M-Medi	um;L-	Low												

Syllabi	ıs				
Modul	e 1 INTRODUC	CTION TO PROCE	SS PLANNING		9
				on-Material evaluation pes of chart techniques	- steps in
Modul	e 2 INTRODUC	CTION TO COST E	STIMATION		9
function	ns of estimation - d		imating and costing	e and aims of cost esting - importance of prepar	
Modul	e 3 COST ESTI	MATION CONCE	PT		9
overhea calcula	ad expenses, Distrib ting depreciation	oution of overhead co	ests – depreciation -	labour cost - expenses. causes of depreciation -	methods of
Modul	e 4 MACHININ	G COST ESTIMA	ΓΙΟΝ		9
				the operations-estimation and grant the control of	
Modul	e 5 PRODUCTI	ON COST ESTIMA	ATION		9
		and fabrication procession of foundry work.	sses, Estimation of c	ost in welding- Estimat	ion in
TextBo	ooks				
1	Khanna Publishers	s - 2011		d Costing including Co	
2	Sinha.B.P., "Mech	anical Estimating and	d Costing", Tata Mc	Graw-Hill, Publishing	Co.2002
Refere	nceBooks				
1	Books, Dec 2002			face", Elsevier science t	echnology
2	Russell.R.S and T	ailor, B.W, "Operation	ons Management", P	HI, 4th Edition	
3	Chitale.A.V. and C	Gupta.R.C., "Product	Design and Manufa	cturing", PHI, 2nd Edit	ion
4	K.C. Jain & L.N. A Khanna Publishers		on Planning Control	and Industrial Manager	nent",
5		, "Automation, Producation Education 20		Computer Integrated	
Cours	eDesigners				
S.No	FacultyName	Designation	Department/ College	Emailid	
1	Dr.S.Prakash	Assistant Professor (Gr II)	Mech/AVIT	prakash@avit.ac.in	
2					

			ODU(SIGN		ND	(Catego	ory	L		Т		P	Cr	edit	
)PME			EC		3		0		0		3	
Prerequ	isite:					·				<u> </u>				<u>I</u>		
CourseC	Object	ive: Ur	ndersta	nd the	applica	ation (of pro	duct d	lesign	meth	ods t	o dev	elop	a pro	duct	
1		able the		ents to	gain	knowl	edge	on the	e prod	cess o	of pro	duct	deve	lopm	ent an	
2	To en issues	able th	ne stud	ents to	under	stand	the F	Produc	t arch	nitecti	ire ai	nd sy	stem	level	desig	
3	To mal	ke the	student	s to fa	miliari	ze wit	h the	Indus	trial d	esign	proc	ess				
4	To make the students to familiarize with the Industrial design process To enable the students to understand the Planning for prototypes and Elements o economic analysis To Understand the background inManaging Product Development Projects															
5	To U	ndersta	nd the	backgı	round i	nMan	aging	Produ	uct De	evelo	pmen	t Pro	jects			
CourseC	Outcor	nes:Oı	n thesu	ıccessf	ulcom	pletio	nof t	hecou	rse,st	uden	tswil	lbeat	oleto			
CO1.	xplain t	he basi	c produ	ict deve	lopmer	nt proc	ess]	Reme	mber	
CO2. Ro	ecall th	ne desig	gn proce	ess for p	product	devel	opmer	nt					Į	Jnder	stand	
CO3.	Apply	the ind	ustrial	design	n proce	ess and	d man	ufactu	ıring (Cost				Ap	ply	
CO4.	Analyz	e the d	lesign p	orincip	les of p	prototy	yping	and E	conoi	mic A	naly	sis		Ana	lyze	
CO5.	Analyz	e the P	roject	Budge	t and P	roject	evalı	ıation-	- pate	nts				Ana	lyze	
Mappin	gwith	Progra	amme	Outcor	mesan	dProg	ramı	neSpe	ecific(Outco	mes					
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1	PSO 1	PSO 2	PSO 3	
CO1	S	S	S	L	-	-	-	M	L	L	-	-	S	-	-	
CO2	S	S	S	M	-	-	-	M	L	L			S	-	-	
CO3	S	S	S	M	-	-	-	M	L	L			S	-	-	
CO4	S	S	S	M	-	-	-	M	L	L			S	-	-	
CO5	S	S	S	M	-	-	-	M	L	L			S	-	-	
S-Strong;	M_Mod	lium•I .	Low		1				I .		1	1	I	I	1	

l

Nodule 1 Product Development and Concept Selection 9 Significance of product design, product design and development process, sequential engineering design method, the challenges of product development — Product development organizations dentifying the customer needs — Establishing the product specifications — concept generation—Concept selection. Module 2 Product Architecture 9	Syllabu	s	
design method, the challenges of product development – Product development organizations identifying the customer needs – Establishing the product specifications – concept generation – Concept selection. Module 2 Product Architecture 9 Concept Testing, Response and Interpretation. Product Architecture, Implication of the architecture – Establishing the architecturePlatform planning, System level design issue Embodiment design, Modelling. Module 3 Industrial and Manufacturing Design 9 Need for industrial design – Impact of industrial design – Industrial design process. Assessing the quality of industrial design. Human Engineering consideration – Estimate the manufacturing cost – Reduce the component cost – Reduce the assembly cost – Reduce the support cost Impact of DFM decisions on other factors Module 4 Prototyping and Economic Analysis 9 Principles of prototyping – Planning for prototypes – Elements of economic analysis – Base case financial model – Sensitivity analysis – Influence of the quantitative factors Module 5 Managing Product Development Projects 9 Sequential, parallel and coupled tasks – Baseline project planning – Project Budget Project execution – Project evaluation– patents- patent search-patent laws International code for patents. TextBooks G. E. Dieter, Engineering Design, McGraw – Hill International, 2013. Charles Gevirtz, Developing New products with TQM, McGraw – Hill International editions, 1994 Karal T. Ulrich, Steven D.Eppinger, Product Design and Development, McGRAW– HILL International Editions, 2003. S.Rosenthal, Effective product design and development, Irwin 1992. Karl Ulrich and Steven Engineer, "Product Design and Development" 5th edition, 2016.	Module	1 Product Development and Concept Selection	9
Concept Testing, Response and Interpretation. Product Architecture, Implication of the architecture — Establishing the architecturePlatform planning, System level design issue Embodiment design, Modelling. Module 3 Industrial and Manufacturing Design 9 Need for industrial design — Impact of industrial design — Industrial design process. Assessing the quality of industrial design. Human Engineering consideration — Estimate the manufacturing cost — Reduce the component cost — Reduce the assembly cost — Reduce the support cost Impact of DFM decisions on other factors Module 4 Prototyping and Economic Analysis 9 Principles of prototyping — Planning for prototypes — Elements of economic analysis — Base case financial model — Sensitivity analysis — Influence of the quantitative factors Module 5 Managing Product Development Projects 9 Sequential, parallel and coupled tasks — Baseline project planning — Project Budget Project execution — Project evaluation— patents— patent search-patent laws International code for patents. TextBooks G. E. Dieter, Engineering Design, McGraw — Hill International, 2013. Ken Hurst, Engineering Design Principles, Elsevier Science and Technology Books, 2014. ReferenceBooks Charles Gevirtz, Developing New products with TQM, McGraw — Hill International editions, 1994 Karal .T. Ulrich, Steven D. Eppinger, Product Design and Development, McGRAW-HILL International Editions. 2003. S. Rosenthal, Effective product design and development, Irwin 1992.	design m Identifyir	ethod, the challenges of product development – Product development org ag the customer needs – Establishing the product specifications – concept g	ganizations-
Ar Lilrich and Steven Enpinger. "Product Design and Development, McGRAW-HILL International Effective Product Design and McGRAW-HILL International Effective Product Design and McGRAW-HILL International Effective Product Design and Development, McGRAW-HILL International Effective Product Design and Development, Sth edition, 2013. Module 3	Module	2 Product Architecture	9
Need for industrial design – Impact of industrial design – Industrial design process. Assessin the quality of industrial design- Human Engineering consideration - Estimate the manufacturin cost – Reduce the component cost – Reduce the assembly cost – Reduce the support cost Impact of DFM decisions on other factors Module 4 Prototyping and Economic Analysis 9	architectu	re - Establishing the architecturePlatform planning, System level de	
the quality of industrial design- Human Engineering consideration - Estimate the manufacturing cost - Reduce the component cost - Reduce the assembly cost - Reduce the support cost Impact of DFM decisions on other factors Module 4 Prototyping and Economic Analysis Principles of prototyping - Planning for prototypes - Elements of economic analysis - Base case financial model - Sensitivity analysis - Influence of the quantitative factors Module 5 Managing Product Development Projects Sequential, parallel and coupled tasks - Baseline project planning - Project Budget Project execution - Project evaluation- patents- patent search-patent laws International code for patents. TextBooks G. E. Dieter, Engineering Design, McGraw - Hill International, 2013. Ken Hurst, Engineering Design Principles, Elsevier Science and Technology Books, 2014. ReferenceBooks Charles Gevirtz, Developing New products with TQM, McGraw - Hill International editions, 1994 Karal .T. Ulrich, Steven D.Eppinger, Product Design and Development, McGRAW-HILL International Editions. 2003. S.Rosenthal, Effective product design and development, Irwin 1992. Karl Ulrich and Steven Enpinger, "Product Design and Development", 5th edition 2014.	Module	3 Industrial and Manufacturing Design	9
Principles of prototyping – Planning for prototypes - Elements of economic analysis – Base case financial model – Sensitivity analysis – Influence of the quantitative factors Module 5 Managing Product Development Projects 9	the qual cost — F	ity of industrial design- Human Engineering consideration - Estimate the material design - Reduce the assembly cost — Reduce the superior to the superior in the superior cost — Reduce	anufacturing
Sequential, parallel and coupled tasks - Baseline project planning - Project Budget Project execution - Project evaluation- patents- patent search-patent laws International code for patents. TextBooks	Module	4 Prototyping and Economic Analysis	9
Sequential, parallel and coupled tasks - Baseline project planning - Project Budget Project execution - Project evaluation- patents- patent search-patent laws International code for patents. TextBooks G. E. Dieter, Engineering Design, McGraw - Hill International, 2013. Ken Hurst, Engineering Design Principles, Elsevier Science and Technology Books, 2014. ReferenceBooks Charles Gevirtz, Developing New products with TQM, McGraw - Hill International editions, 1994 Karal .T. Ulrich, Steven D.Eppinger, Product Design and Development, McGRAW-HILL International Editions.2003. S.Rosenthal, Effective product design and development, Irwin 1992. Karl Ulrich and Steven Enpinger, "Product Design and Development" 5th edition, 2014.			– Base
execution — Project evaluation- patents- patent search-patent laws International code for patents. TextBooks G. E. Dieter, Engineering Design, McGraw — Hill International, 2013. Ken Hurst, Engineering Design Principles, Elsevier Science and Technology Books, 2014. ReferenceBooks Charles Gevirtz, Developing New products with TQM, McGraw — Hill International editions, 1994 Karal .T. Ulrich, Steven D.Eppinger, Product Design and Development, McGRAW-HILL International Editions. 2003. S.Rosenthal, Effective product design and development, Irwin 1992. Karl Ulrich and Steven Eppinger, "Product Design and Development", 5th edition, 2014.	Module	5 Managing Product Development Projects	9
G. E. Dieter, Engineering Design, McGraw – Hill International, 2013. Ken Hurst, Engineering Design Principles, Elsevier Science and Technology Books, 2014. ReferenceBooks Charles Gevirtz, Developing New products with TQM, McGraw – Hill International editions, 1994 Karal .T. Ulrich, Steven D.Eppinger, Product Design and Development, McGRAW-HILL International Editions. 2003. S.Rosenthal, Effective product design and development, Irwin 1992. Karl Ulrich and Steven Eppinger, "Product Design and Development" 5th edition, 2014	executio		
Ken Hurst, Engineering Design Principles, Elsevier Science and Technology Books, 2014. ReferenceBooks Charles Gevirtz, Developing New products with TQM, McGraw – Hill International editions, 1994 Karal .T. Ulrich, Steven D.Eppinger, Product Design and Development, McGRAW-HILL International Editions.2003. S.Rosenthal, Effective product design and development, Irwin 1992. Karl Ulrich and Steven Enpinger, "Product Design and Development", 5th edition, 2014			
Technology Books, 2014. ReferenceBooks Charles Gevirtz, Developing New products with TQM, McGraw – Hill International editions, 1994 Karal .T. Ulrich, Steven D.Eppinger, Product Design and Development, McGRAW-HILL International Editions.2003. S.Rosenthal, Effective product design and development, Irwin 1992. Karl Ulrich and Steven Eppinger, "Product Design and Development", 5th edition, 2016.	1	G. E. Dieter, Engineering Design, McGraw – Hill International, 2013.	
Charles Gevirtz, Developing New products with TQM, McGraw – Hill International editions, 1994 Karal .T. Ulrich, Steven D.Eppinger, Product Design and Development, McGRAW-HILL International Editions.2003. S.Rosenthal, Effective product design and development, Irwin 1992. Karl Ulrich and Steven Eppinger, "Product Design and Development", 5th edition, 2016.	2		
editions, 1994 Karal .T. Ulrich, Steven D.Eppinger, Product Design and Development, McGRAW- HILL International Editions.2003. S.Rosenthal, Effective product design and development, Irwin 1992. Karl Ulrich and Steven Eppinger, "Product Design and Development", 5th edition, 2016	Referen	ceBooks	
2 HILL International Editions.2003. 3 S.Rosenthal, Effective product design and development, Irwin 1992. Karl Ulrich and Steven Enpinger "Product Design and Development", 5th edition, 2014			national
Karl Ulrich and Steven Enninger "Product Design and Development" 5th edition 201			GRAW-
4 Karl Ulrich and Steven Eppinger, "Product Design and Development", 5th edition, 201	3	S.Rosenthal, Effective product design and development, Irwin 1992.	
	4	Karl Ulrich and Steven Eppinger, "Product Design and Development", 5th ed	dition, 2016

Course	CourseDesigners												
S.No	FacultyName	Designation	Department/ College	Emailid									
1	Mr.SATHIYARAJ S	Assistant Professor G-II	Mech/AVIT	sathiyaraj@avit.ac.in									
2													

		LII	RODU FECY	CLE		C	Catego	ry	L		T		P	Cr	edit
		MAN	IAGE:	MEN'	Γ		EC		3		0		0		3
Prerec	quisite:N i	il													
Course	eObjectiv	ve													
1	To imp		e lates	t knov	vledge	, prin	ciples,	strate	gies, p	oractio	es, an	d app	licatio	ns in F	PLM
2	To provide an in-depth understanding of various applications and solutions of PLM.														
3	Apply PLM concepts for service industry and E-Business.														
4	To bui		•	al foun	dation	of PL	M, alo	ng wi	th the	latest	indus	try vie	ws or	PLM	
5	To pre	sent fr	amew	orks v	vhich p	provid	e ecor	nomic	justific	cation	s for P	LM pr	ojects	5.	
Cours	eOutcom	es:Or	n thes	ucces	sfulco	mple	etiono	f theo	course	e,stud	lentsv	villbe	ablet	0	
CO1	Understa	nd pro	duct o	data, ir	nforma	ation,	struct	ures a	nd PLN	∕l con	cepts		ι	Inders	tand
CO2	Apply PLI sales and	•		_				ıcludir	ng pro	ductio	n, afte	er sale	s,	App	ly
CO3	To Apply Manufact		oncept	s of e	– Mar	nufact	uring	in Ind	ustrial	secto	rs and	Digita	al	Арр	ly
CO4	Apply an		ign th	ne vai	rious	strate	gies f	or pro	ocess	and	produ	ct dat	а	Analy	'se
CO5	Configure requisite	_			produ	ct st	ructur	es, v	vorkflo	ow, p	orojec	ts an	d	Арр	ly
Mappi	ingwith I	Progra	amme	Outc	omesa	andP	rogra	mme	Speci						
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSC 3
CO1	S	S	S	S	S	M	-	-	M	L			S		
CO2	S	S	M	S	S	S	S	S	S	L			S		
CO3	S	S	S	S	S	M	S	S	S	L			S		
CO4	S	M	S	M	S	S	S	S	M	L			S		
CO5	M	S	S	S	M	S	S	S	M	L			S		
S-Stron	g;M-Medi	um;L-l	Low												

Syllabi	us				
Modul	e 1 Fundamentals	of PLM			9
and pro		ormation model, T	he product informa	ent concept, Informa ation (data) model, T	
Modul	e 2 Enterprise solu	ution with PLM			9
Develop		ering, Impact of	Manufacturing wit	organization vertica h PLM Challenges thinking.	
Modul	e 3 PLM for e-Mar	nufacturing			9
with oth	•	ferent ways to integ	rate PLM systems, T	g, Integration of the large ransfer file, Database	•
Modul	e 4 Technology Fo	recasting			9
relevan		ical methods and n		of technology forecast, combining forecast	
Modul	e 5 PLM Solutions				9
correspo Structur Systems	onding technologies re & Configuration, s and Components.	s, Enterprise inform	nation, knowledge	Phases of product li and IP, Change Proce tion Standards, Vend	ess, Product
TextBo	ooks				
1	Jaya Krishna S, Pro	duct Lifecycle Mana	gement: Concepts a	nd cases, ICFAI Publica	ntions 2011.
2	Grieves, Michael, F	Product Lifecycle Ma	nagement, McGraw	-Hill, 2006.	
Refere	nceBooks				
1	Fabio Giudice, Guio Taylor & Francis 20	<u>-</u>	Design for the envir	onment-A life cycle ap	proach,
2	•	ven D. Eppinger, Pro	duct Design & Deve	lopment, McGraw Hill	
3	Stark, John. Produc	ct Lifecycle Manager	ment: Paradigm for 2	21st Century Product F	Realization,
4	SpringerVerlag, 20		Product Life Cycle	Management - Spri	nger
	riimbaaksvuoii, F				iigci
Course	Designers				
S.No	FacultyName	Designation	Department/ College	Emailid	
1	Praveen R	Asst. Prof – II	Mech. / AVIT	praveen@avit.ac.ir	l
	<u>l</u>	<u> </u>	<u> </u>	1	

OPEN ELECTIVE COURSES

			FUN	DAME	NTALS	S OF II	NTERN	VET OI	7	(Category	L	Т	P C	redit	
			1011			INGS	· ILI	LI OI	-		OE .	3	0	0	3	
			for stat	istical	data ma	ınipulat	ion and	d analys	sis. It v			and is me				
PRERI NIL	EQUIS	ITE														
	SE OB	JECTI	VES													
1	To lea	rn Intro	duction	to Io	 Γ											
2	To Stu	ıdy met	hodolog	gy of Ic	T											
3	To De	velop I	oT appl	ication	s using	Arduin	o and In	ntel Edi	tion							
COUR	SE OU	TCOM	IES													
On the	success	ful con	pletion	of the	course,	student	ts will b	e able t	0							
CO1: T				cs in In	troducti	on to I	ToT in t	terms of	constr	ucts, con	trol	Understa	and			
CO2: T				of Intro	duction	to IoT	funda	mentals	5.			Understa	and & A	Apply		
CO3: L	earn to	apply I	ntroduc	tion to	IoT fo	r Com	nunicat	ing Seq	uential	Process		Understa	and & A	Apply		
CO4: A	ble to ε	pprecia	ite and a	apply th	ne Intro	duction	to IoT	from a	a statist	ical pers	pective	Understa	and & A	apply		
CO5 To	o learn I	ntroduc	ction to	IoT C	halleng	es						Understa	and & A	Apply		
MAPP	ING W	TTH P	ROGR	AMMI	E OUT	COME	S AND	PROG	FRAMI	ME SPE	CIFIC (OUTCO	MES			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	S	S	M	M	L	S	S	M	S	L	S		S	M	S	
CO2	3.4	a	N /	3.4	N. f			3.4	ď	3.4	M	M	M	M	S	
CO ₄	M	S	M	M	M	S	S	M	S	M	M	- N/I	M	-	S	
CO4 CO5	S	S	S	S	M	S	S	S	S	M	S	M S	M M	S M	M M	
	ng; M-N				101	ن	S	S	ن	1V1	S	ن ن	171	171	171	
																L
																L
																1

SYLLABUS

UNIT I -INTRODUCTION to IoT

Defining IoT, Characteristics of IoT, Physical design of IoT, Logical design of IoT, Functional blocks of IoT, Communication models & APIs

.

UNIT II- IoT & M2M

Machine to Machine, Difference between IoT and M2M, Software define Network

UNIT III – Network & Communication aspects

Wireless medium access issues, MAC protocol survey, Survey routing protocols, Sensor deployment & Node discovery, Data aggregation & dissemination

UNIT IV - Domain specific applications of IoT

Design challenges, Development challenges, Security challenges, Other challenges

UNIT V – Reflection, Low-Level Programming

Introduction to Python, Introduction to different IoT tools, Developing applications through IoT tools, Developing sensor based application through embedded system platform, Implementing IoT concepts with python

TEXT BOOKS

- 1. Vijay Madisetti, Arshdeep Bahga, "Internet of Things: A Hands-On Approach"
- 2. Waltenegus Dargie, Christian Poellabauer, "Fundamentals of Wireless Sensor Networks: Theory and Practice" **REFERENCES**
- 1. Macro Schewartz, "Internet of Things with the Arduino Yun" Packet Publishing, 2014.

COURSE DESIGNERS

S. No.	Name of the	Designation	Department	Mail ID
	Faculty			
1	Dr.M.Jayachandran	Professor	CSE	jayachandran@avit.ac.in
2	Dr.M.Nitya	Professor	CSE	nithya@vmkvec.edu.in

			GRE	EN PO	WER (SENEI	RATIO	N SYST	EMS	(Category	L	Т	C	redit
										О	Е	3	0 ()	3
The co	and inv	estigate	es the c	ontribut	ion the	y can	make to	the ene	cluding w ergy profil onment, po	le of the	e nation.	The te	chnolog	y used to	harness
PRER	EQUISI	TE: 1	NIL												
COUF	RSE OB	JECTI	VES												
1	Understa	nd the	nexus b	etween	energy	, enviro	nment,	, and sust	tainable de	evelopr	nent				
2	Apprecia	te ener	gy ecos	ystems	and its	impact	on env	ironmen	t						
3	Learn ba	sics of	various	types o	f renew	able ar	nd clear	n energy	technolog	gies					
4	Serve as	bridge	to adva	nced co	urses ii	n renew	able er	nergy							
COU	RSE OU'	TCOM	IES												
On the	successi	ful com	pletion	of the c	ourse,	student	s will t	e able to)						
CO1: 1	Explain r	enewal	ble ener	gy sour	ces & s	ystems								Understa	nd
	Apply egen, and	•	·	•	s to bu	iild sol	ar, wir	nd, tidal,	geothern	nal, bio	ofuel, fu	el cell,		Apply	
	•			•				e energy.	Concepts	s in sol	lving nu	merical		Analyz	e
CO4: 1	Demonst	rate sel	f -learn	ing capa	ability 1	o desig	gn & es	tablish re	enewable e	energy	systems.			Analyz	e
CO5:		experi	ments 1	to asses	s the p	perform	nance o	of solar I	PV, solar	therma	l and bi	odiesel		Apply	
MAPI	PING W	ITH P	ROGR	AMME	OUT	COME	S AND	PROG	RAMME	SPECI	FIC OU	JTCON	IES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	-	-	-	M	-	L	L	-	-	-	-	M	-	-
CO2	S	M	S	L	M	-	L	M	-	M	-	-	-	-	-
CO3	CO3 S M M M												L	-	-
CO4	S	-	-	-	M	-	L	-	-	-	-	M	-	-	-
CO5	S	M	S	L	M	-	L	M	-	M	M	-	M	L	-
CO6	CO6 S M - L L													-	
S- Stro	ong; M-N	1edium	; L-Lov	v	1	1	1	1	<u> </u>		1		1	1	ı

SYLLABUS

ENERGY

Introduction to the nexus between energy, environment and sustainable development, Energy sources overview and classification, sun as the source of energy, fossil fuel reserves and resources - overview of global/ India's energy scenario. Energy consumption models – Specific Energy Consumption

ECOLOGY AND ENVIRONMENT

Concept and theories of ecosystems, - energy flow in major man-made ecosystems- agricultural, industrial and urban ecosystems - sources of pollution from energy technologies and its impact on atmosphere - air, water, soil, and environment - environmental laws on pollution control, The environmental protection act: Effluent standards and ambient air quality, innovation and sustainability, eco-restoration: Phyto-remediation.

RENEWABLE SOURCES OF ENERGY

Solar Energy: Solar radiation: measurements and prediction. Indian's solar energy potential and challenges, solar energy conversion principles and technologies: Photosynthesis, Photovoltaic conversion, and Photo thermal energy conversion. Wind Energy: Atmospheric circulations, atmospheric boundary layers, classification, factors influencing wind, wind shear, turbulence, wind energy basics and power Content, wind speed monitoring, Betz limit, wind energy conversion system: classification, characteristics, and applications. Ocean Energy: Ocean energy resources-ocean energy conversion principles and technologies: ocean thermal, ocean wave & ocean tide

BIOENERGY

Biomass as energy resources; bio-energy potential and challenges, Classification, and estimation of biomass; Source and characteristics of biofuels: Biodiesel, Bioethanol, Biogas. Types of biomass energy conversion systems - waste to energy conversion technologies

OTHER ENERGY SOURCES AND SYSTEMS

Hydropower, Nuclear fission, and fusion-Geothermal energy: Origin, types of geothermal energy sites, site selection, geothermal power plants; hydrogen energy, Magneto-hydro-dynamic (MHD) energy conversion – Radioisotope Thermoelectric Generator (RTG), Bio-solar cells, battery & super capacitor, energy transmission and conversions.

TEXTBOOKS:

- 1. Energy and the Environment, Ristinen, Robert A. Kraushaar, Jack J. AKraushaar, Jack P. Ristinen, Robert A., 2nd Edition, John Wiley, 2006,
- 2. Energy and the Challenge of Sustainability, World Energy assessment, UNDP, N York, 2000.

REFERENCE BOOKS:

- 1. Ocean Energy: Tide and Tidal Power by R. H. Charlier and Charles W. Finkl, Springer 2010
- 2. Introduction to Electrodynamics (3rd Edition), David J. Griffiths, Prentice Hall, 2009

COURSE DESIGNERS

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. R. Devarajan	Professor	EEE	devarajan@vmkvec.edu.in
2	Mr. R. Sathish	Assistant Professor	EEE	sathish@vmkvec.edu.in
3	Mr. V.Rattankumar	Assistant Professor	EEE	rattankumar@avit.ac.in

NEW VENTURE PLANNING AND	Category	L	Т	P	Credit
MANAGEMENT	OE	3	0	0	3

PREAMBLE

Contemporary methods and best practices for the entrepreneur to plan, launch, and operate a new venture and creation of a business plan

PREREQUISITE - Not Required

COURSE OBJECTIVES

- 1 An opportunity for self-analysis, and how this relates to success in an entrepreneurial environment.
 2 Information and understanding necessary to launch and grow an entrepreneurial venture.
- 3 A realistic preview of owning and operating an entrepreneurial venture.
- 4 An entrepreneur must understand the diversity, emotional involvement, and workload necessary to succeed.
- 5 The opportunity to develop a business plan.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1: Explain the concept of new venture planning, objectives and functions and its	Understand
components.	
CO2: Analyze the business plan issues and remuneration practices in startups business.	Apply
CO3: Explore an entrepreneurial idea to the point where you can intelligently and decide	Apply
whether to "go for it" or not.	
CO4: Compare and contrast the different forms entrepreneurial environment in terms of their	Apply
key differences and similarities.	
CO5: Explore the business plan and business model canvas for your idea.	Apply

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COs	P	P	P	P	P	P	P	PO	PO9	PO10	PO11	P012
	O1	O2	O3	O4	O5	O6	O7	8				
CO1	M	-	-	-	-	M	S	S	-	M	-	-
CO2	S	S	S	M	M	M	-	-	-	-	-	-
CO3	S	S	S	M	M	M	-	-	-	-	-	-
CO4	S	S	S	M	M	M	-	i	-	1	-	_
CO5	S	S	S	M	M	M	-	-	-	-	-	-

S- Strong; M-Medium; L-Low

SYLLABUS:

STARTING NEW VENTURE: Opportunity identification - Search for new ideas - Sources of innovative ideas - Techniques for generating ideas - Entrepreneurial imagination &creativity - The role of creative thinking - Developing your creativity - Impediments to creativity.

METHODS TO INITIATE VENTURES: Pathways to new venture - Creating new ventures - Acquiring an existing venture - Advantages of acquiring an established venture - Examination of key issues – Franchising -

How a franchise works and franchise law - Evaluating franchising opportunity.

THE SEARCH FOR ENTREPRENEURIAL CAPITAL: The venture capital market - Criteria for evaluating new venture proposals - Evaluating venture capitalists - stage of venture capital financing - Alternate sources of financing for Indian entrepreneurs - Bank funding - State financial corporations - Business incubators and facilitators - Informal risk capital - Angel investors.

THE MARKETING ASPECTS OF NEW VENTURE: Developing a marketing plan - Customer analysis - Sales analysis - Competition analysis - Market research - Sales forecasting - Sales Evaluation - Pricing decisions.

BUSINESS PLAN PREPARATION FOR NEW VENTURE: Business plan concept - Pitfalls to avoid in business plan - Developing a well conceived business plan - Elements of a business plan - Harvest strategy - Form of business organization - Legal acts governing businesses in India .

Text Book:

- 1. The Successful Business Plan, Secrets & Strategies, Rhonda Abrams, Published by The Planning Shop Titan, Ron Chernow, Random House
- 2. Osterwalder, A. and Pigneur, Y. (2010). Business Model Generation: A Handbook for Visionaries, Game Changers, and Challengers, Hoboken, NJ: John Wiley & Sons

Reference Books:

- 1. Blackwell, E. (2011). How to Prepare a Business Plan: Create Your Strategy; Forecast Your Finances; Produce That Persuasive Plan. Kogan Page Publishers.
- 2. Levi, D. (2014). Group Dynamics for Teams. Sage Publications, Inc. Thousand Oaks.
- 3. Rajeev Roy, 'Entrepreneurship' 2nd Edition, Oxford University Press, 2011.
- 4. Business Model Generation by Osterwalder and Pigneur.

COURSE DESIGNERS:

S.No	Name of the faculty	Designation	Department	E-Mail Id
1			Management Studies	
2			Management Studies	
			_	

Operations Research

Category	L	T	P	Credit
OE	2	2	0	3

Preamble

Operations Research is the study of optimization techniques. It is applied in decision theory. Rapid development and invention of new techniques occurred since the World War II essentially, because of the necessary to win the war with the limited resources available. It is applied for solving Inventory control problems, Maintenance and Replacement problems, Sequencing and Scheduling problems, Assignment of Jobs to applicants, Transportation problems, Network problems and Decision models. Entire subject is useful for all resource managers of various fields.

Prerequisite

NIL

Course Objectives

- 1. Develop linear programming problems and find solutions of LPP and apply in management decisions
- 2. To acquire knowledge of linear programming, assignment and transportation problems
- 3. Techniques of PERT, CPM and sequencing
- 4. Detailed knowledge of Inventory control
- 5. Decision theory and Game theory techniques

Course Outcomes

On the successful completion of the course, students will be able to

CO1.Formulate the LPP. Conceptualize the feasible region. Solve the LPP with two variables using graphical method and By simplex method.	Understand& Apply
CO2. Become familiar with the types of problems that can be solved by applying a transportation model. Be able to identify the special features of the assignment problem.	Apply
CO3. Solve network problems using CPM and PERT techniques and apply sequencing model	Apply
CO4. Determine the order quantity. Determine the reorder point and safety stock for inventory systems. Design a continuous or periodic review inventory control system	Apply
CO5. Apply replacement models .To makedecisionsinacompetitive Environmentisaverycommonandimportantone.	Apply

Mapping with Programme Outcomes and Programme Specific Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
1.	S	M	L		S			S				
2.	S	M	L		S			S				
3.	S	M	L		S			S				
4.	S	S	L		M			S				
5.	S	S	L		M			S				

Syllabus

LINEAR PROGRAMMING

Linear programming problem - Graphical method - Simplex method - Big M method - Duality principle.

TRANSPORTATION MODEL

Transportations problem – Assignment problem – Under Assignment -Travelling salesman problem

NETWORK MODEL

Project Network - CPM and PERT Networks - Critical path scheduling - Sequencing Models.

INVENTORY MODELS

Inventory Model – Economic Order Quantity Model – Purchasing Model (with and without shortages) – Manufacturing Model (with and without shortages) - Stochastic Inventory Model (Stock in discrete and continuous units).

DECISION MODEL

Decision Model – Game theory – Two Person Zero sum game – Algebraic solutions Graphical solutions – Replacement model – Model based on Service life – Economic life single / multivariable search technique.

Text Books

- 1. H.A.Taha, "Operations Research", Prentice Hall of India, 1999, Six Edition.
- 2. KantiSwarup, P.K. Gupta, Man Mohan, Sultan Chand & Sons, New Delhi (2010)

Reference Books

- 1. Sundarasen.V, Ganapathysubramaniyam . K.S. Ganesan.K. "Operations Research" ,A.R. Publications
- 2. Premkumar Gupta, Hira, "Operations Research" Chand & company New Delhi.

Assessment Pattern/Assessment Methods

Plaamia Catagowy	Continuous	Assessment 7	Terminal Examination	
Bloom's Category	1 2		3	Teriimai Examination
Remember	20	10	10	0
Understand	20	30	30	30
Apply	60	60	60	70
Analyse	0	0	0	0
Evaluate	0	0	0	0
Create	0	0	0	0

Course Designers:

S.No	Name of the Faculty	Mail ID
1	V.T.Lakshmi	lak_msc@yahoo.co.in
2	S.Punitha	puni.jeeju80@gmail.com

	PROJECT MANAGEMENT FOR	Category	L	T	P	Credit					
		, , , , , , , , , , , , , , , , , , ,									
	ENGINEERING BUSINESS AND	OE	3	0	0	3					
	TECHNOLOGY										
PREAMBLE: Engineering Project Management is a type of Project Management, focuses solely on											
engineering and Management. Similar to other Project Management it posses standard methodologies and											
processes with engineering background. It enables to get into the field of Project Management. These skills											

can provide critical benefits such as improved efficiency, enhanced effectiveness, success replication, perfect leadership and communication, and complete view of the project in the aspect of time and cost.

PREREQUISITE: Not Required

COURSE OBJECTIVES:

- 1. To understand the importance of Project Management.
- 2. To understand the Project management Techniques.
- 3. To understand the statistical process control.
- 4. To impart the various Project management tools and software.
- 5. To understand the Project management and resource utilization.

COURSE OUTCOMES:

After successful completion of the course, students will be able to

CO1: Understand the importance of Project Management and Business.	Understand
CO2: Explain the required tools to implement Project Techniques.	Apply
CO3: Analyze various Project constraints with help of project tools.	Analyze
CO4: Evaluating various Project Techniques.	Analyze
CO5: Put forward the Project management in a different organization milieu.	Evaluate

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO	S	M	-	-	-	M	-	-	M	S	-	M	M	-	-
CO2	S	S	M	-	M	M	S	M	S	S	-	-	M	S	M
CO3	S	M	M	M	S	-	M	M	-	M	-	M	S	M	-
CO ²	M	-	S	-	M			S	S			M	-	S	-
COS	M	M	-	-	M	M	M	S		S	M	S	M	-	S

S- Strong; M-Medium; L-Low

SYLLABUS:

INTRODUCTION

Project Management concept-Attributes as a project-Project life cycle-The Project Management process-Benefits of Project Management- Needs, Identification-Project selection-preparing a request for proposal-Soliciting proposals-Proposed solutions- Proposal Marketing-Bid/No-Bid Decision-Developing Winning Proposal-Proposal preparation-Proposal contents-Pricing Consideration-Proposal Submission and Follow-up - Customer evaluation as proposals-Types of contracts-Contract provisions.

PROJECT PLANNING

Project Planning-Project Planning Objective-Work Break-down structure-Responsibility Matrix-Defining activities-Developing the network plan-Planning for Information system development- -Scheduling-activity duration estimates-project start and finish times-Schedule calculation-Scheduling for information systems development.

PROJECT CONTROL PROCESS

Schedule control-Project control process-Effects of actual schedule performance - Incorporating project changes into schedule-Updating the project schedule-Approaches to schedule control-Schedule control for information system development – Resource consideration-Constrained Planning-Planned resources utilization – Resources levelling- Limited scheduling-Project Management software – Cost Planning and Performance - Project cost Estimates-Project Budgeting-Determining actual cost-Determining the value of work performed-Cost performance analysis-Cost forecasting-Cost control-Managing Cash Flow.

RISK AND FEASIBILITY

Benchmarking – Reasons - Process- Quality Function Deployment (QFD) – House of Quality- QFD Process- Benefits- Taguchi Quality Loss Function- Total Productive Maintenance (TPM) – Concept-Improvement Needs- FMEA – Stages of FMEA.

PROJECT MANAGER SKILLS AND ABILITIES

Project Manager-Responsibilities of the Project Manager-Skills at the Project Manager - Developing the skill needed to be a Project Manager-Delegation-Managing Change – Project Team-Project Team development and Effectiveness- Ethical Behaviour conflict on project-problem solving-Time Management-Project Communication and Personal Communication-Effective listening-Meetings-Presentation-Report-Project documentation and Controlling changes-Types of project organization- Matrix organization.

TEXT BOOKS:

- 1. Samuel J.Mantel JR., Jack R.Meredith, Project Management, Wiley India, Edition 2006.
- 2. Santakki.V.C., Project Management, Himalaya Publishing House, Edition 2006.

REFERENCES:

1. Project Management, Jack Gido and James P Clements, (Edition 2009) Cenage Learning India pvt Ltd., New Delhi.

COURSE DESIGNERS:

S.No	Name of the Faculty	Designation		mail id	
1	B. Rajnarayanan	Assistant Professor	Management Studies	rajsachin.narayanan@gmail.com	
2	Dr. V.Sheelamary	Asso.Professor	Management Studies	sheelamary@avit.ac.inn	

MANDATORY/ AUDIT COURSES

Course Code	Course Title	Category	L	T	Р	С
	English for Research Paper Writing	HSS	2	0	0	0

Course Objectives:

- 1. To understand research problem formulation.
- 2. Need to analyze research related information
- 3. Evaluate and Follow research ethics

Unit I Research

Meaning of research problem - Sources of research problem- Criteria Characteristics of a good research problem - Errors in selecting a research problem - Scope and objectives of research problem

Unit II Data Analysis

Approaches of investigation of solutions for research problem - data collection, analysis, interpretation - Necessary instrumentations

Unit III Plagiarism

Effective literature Reviews - approaches, analysis Plagiarism – Definition of Plagiarism – Consequences of Plagiarism – Unintentional Plagiarism – Forms of Plagiarism - Related Issues - Research ethics

Unit IV Research Paper Format

Effective technical writing, how to write report, Paper Developing a Research Proposal

Unit V Format

Format of research proposal – Margin – Text Formatting - Heading and Title – Page Numbers –Tables and Illustrations – Corrections and Insertions –Binding – Bibliography

Total: 45 Periods

References:

- 1. Stuart Melville and Wayne Goddard, "Research methodology: an introduction for science & engineering students'"
- 2. Wayne Goddard and Stuart Melville, "Research Methodology: An Introduction"
- 3. Ranjit Kumar, 2nd Edition, "Research Methodology: A Step by Step Guide for beginners"

COURSE DESIGNERS								
COURSE	DESIGNATION	NAME OF THE	MAIL ID					
INSTRUCTOR		INSTITUTION						
Dr. Premkishor	Assistant Professor	AVIT	PREM.ENGLISH@avit.ac.in					
Dr.Jennifer G	HoD-H&S	AVIT	jennifer@avit.a.cin					
Joseph								

			D		ER MI			AND		atego ry	L]		P	Cre dit	
				MANAGEMENT				3		1		0	0			
PRE	AMBL	Æ											<u> </u>		1	
PREI	REQU	ISITE														
NIL																
COU	RSEO	BJEC'	FIVES													
1		To stud	y about	the Disa	ster Mai	nageme	ent Cy	cles								
2		To Stud	y about	the Disa	aster Co	mmuni	ty and	planni	ng							
3		To Und	erstand	the Chal	lenges p	osed b	y Disa	sters to	the co	ommu	nity					
4		To stud	y about	coping c	concepts	for bo	th natu	ıral and	l man	made o	lisaste	rs				
5	To study about strengthening techniques for structural and non structural measures															
COU	RSEO	UTCO	MES													
					ourse,st							1	_			
					made Ha ement m			ılnerab	ilities			U	nderstan	dand A	apply	
					zations i			saster	comm	unity			pply			
													pply			
			•	nd to dis					11 .			A	pply			
	∪ndersi gements	U	capacity	buildin	g conce	ots and	plann	ing of o	disaste	r		U	nderstan	dandA	pply	
`			PROG	RAMM	IEOUT	COM	ESA	NDPR	OGR	AMM	IESPI	ECIF	ICOUI	ГСОМ	IES	
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9			РО	PSO1		PS	P
CO1	L	L	L	L	L	L	M	L	L	0 M	11 L	12 M	M	CO2 L	O3 L	O _M
CO2	M	M	L	L	M	L	S	L	L	M	M	S	S	L	L	S
CO3	S	M	L	L	M	L	M	L	L	M	S	S	M	L	L	S
CO4	M	M	L	L	M	L	M	L	L	S	S	S	S	L	L	M
CO5	S	S	L	L	S	L	S	L	L	S	M	M	S	L	L	S

SYLLABUS

UNIT I INTRODUCTION

Overview of Disaster Management – Distinguishing between an emergency and a Disaster situation. Disaster Management Cycle – Disaster management Act and Policy in India; Organisational structure for disaster management in India; Preparation of state and district disaster management plans- Phase I: Mitigation, and strategies; hazard Identification and vulnerability analysis. Disaster Mitigation and Infrastructure, impact of disasters on development programmes, vulnerabilities caused by development, developing a draft country-level disaster and development policy Phase II: Preparedness, Disaster Risk Reduction(DRR), Emergency Operation Plan (EOP) Phases III and IV: Response and recovery, Response aims, Response Activities, Modern and traditional responses to disasters, Disaster Recovery, and Plan

UNIT IIDISASTER PLANNING

Disaster Planning-Disaster Response Personnel and duties, Community Mitigation Goals, Pre-Disaster Mitigation Plan, Personnel Training, Volunteer Assistance, School-based Programmes, Hazardous Materials, Ways of storing and safely handling hazardous materials, Coping with Exposure

.

UNIT III DISASTER COMMUNITY

Disaster Community-Community-based Initiatives in Disaster management, need for Community-Based Approach, categories of involved organizations: Government, Nongovernment organizations (NGOs), Regional And International Organizations, Panchayaths, Community Workers, National And Local Disaster Managers, Policy Makers, Grass-Roots Workers, Methods Of Dissemination Of Information, Community-Based Action Plan, Advantages/Disadvantages Of The Community Based Approach

UNIT IVCOPING WITH DISASTER

Coping Strategies; alternative adjustment processes - Changing Concepts of disaster management - Industrial Safety Plan; Safety norms and survival kits - Mass media and disaster management

UNIT VCAPACITY BUILDING

Concept - Structural and Nonstructural Measures Capacity Assessment; Strengthening Capacity for Reducing Risk - Counter-Disaster Resources and their utility in Disaster Management - Legislative Support at the state and national levels

BOOKS:

- 1. Manual on Disaster Management, National Disaster Management, Agency Govt of India.
- 2. Ayaz, "Disaster Management: Through the New Millennium", Anmol Publications. (2009)
- 3. Dave, P. K.. "Emergency Medical Services and Disaster Management: A Holistic Approach", New Delhi: Jaypee Brothers Medical Publishers (P) Ltd., 2009
- 4. Disaster Management by Mrinalini Pandey Wiley 2014.
- 5. Goel, S. L., "Disaster Management", New Delhi: Deep & Deep Publication Pvt. Ltd. ,2008 **REFERENCES:**

1. Narayan, B. "Disaster Management", New Delhi: A.P.H. Publishing Corporation, 2009

- 2. Kumar, N.. "Disaster Management". New Delhi: Alfa Publications. ,2009
- 3. Ghosh, G. K., "Disaster Management", New Delhi: A.P.H Publishing Corporation., References

S.No	NameoftheFaculty	Designation	NameoftheC	MailID	
			ollege		
1	MrsJ.Srija	Assistant	AVIT	srija.civil@avit.ac.in	
		Professor - I			

Course Code	Course Title	category	L	T	P	С
	INDIAN CONSTITUTION	MC	2	0	0	0

Course Objectives:

On completion of this course, the students will be able:

- 1 To understand the nature and the Philosophy of the Constitution.
- 2 To understand the outstanding Features of the Indian Constitution and Nature of the Federal system.
- 3 To Analyse Panchayat Raj institutions as a tool of decentralization.
- 4 To Understand and analyse the three wings of the state in the contemporary scenario.
- 5 To Analyse Role of Adjudicatory Process.
- 5 To Understand and Evaluate the recent trends in the Indian Judiciary.

Course Content

UNIT I

The Constitution - Introduction

The Historical background and making of the Indian Constitution –Features of the Indian Constitution- Preamble and the Basic Structure - Fundamental Rights and Fundamental Duties – Directive Principles State Policy

UNIT II –Government of the Union

The Union Executive- Powers and duties of President –Prime Minister and Council of Ministers - Lok Sabha and Rajya Sabha

UNIT III –Government of the States

The Governor -Role and Powers - Cheif Minister and Council of Ministers- State Legislature

UNIT IV - Local Government

The New system of Panchayats , Municipalities and Co-Operative Societies

UNIT V – Elections

Powers of Legislature -Role of Chief Election Commissioner-State Election Commission

TEXTBOOKS AND REFERENCE BOOKS:

1 Ethics and Politics of the Indian Constitution Rajeev Bhargava Oxford University Press, New Delhi, 2008

Total Hours: 30 hours

- 2 The Constitution of India B.L. Fadia Sahitya Bhawan; New edition (2017)
- 3 Introduction to the Constitution of India DD Basu Lexis Nexis; Twenty-Fourth 2020 edition Suggested.

Software/Learning Websites:

- 1. https://www.constitution.org/cons/india/const.html
- 2. http://www.legislative.gov.in/constitution-of-india

- 3. https://www.sci.gov.in/constitution
- 4. https://www.toppr.com/guides/civics/the-indian-constitution/the-constitution-of india/ Alternative NPTEL/SWAYAM Course:

S.NO	NPTEL ID	NPTEL Course Title	Course Instructor
1	12910600	CONSTITUTION OF INDIA AND	PROF. M. K. RAMESH
		ENVIRONMENTAL GOVERNANCE:	NATIONAL LAW
		ADMINISTRATIVE AND ADJUDICATORY	SCHOOL OF INDIA
		PROCESS	UNIVERSITY

COURSE DESIGNER									
S.NO	NAME OF THE FACULTY	DESIGNATION	NAME OF THE INSTITUTION	MAIL ID					
1	Dr.Sudheer	Principal	AV School of Law	Sudheersurya18@gmail.com					